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Abstract
This paper investigates the flight mechanics of a micro aerial vehicle without a vertical tail in
an effort to reverse-engineer the agility of avian flight. The key to stability and control of such
a tailless aircraft lies in the ability to control the incidence angles and dihedral angles of both
wings independently. The dihedral angles can be varied symmetrically on both wings to
control aircraft speed independently of the angle of attack and flight path angle, while
asymmetric dihedral can be used to control yaw in the absence of a vertical stabilizer. It is
shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and
generate a wide range of equilibrium turn rates while maintaining a constant flight speed and
regulating sideslip. Numerical continuation and bifurcation analysis are used to compute trim
states and assess their stability. This paper lays the foundation for design and stability analysis
of a flapping wing aircraft that can switch rapidly from flapping to gliding flight for agile
manoeuvring in a constrained environment.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

There is an increasing interest in the aerospace community
to learn and mimic avian flight with the ultimate objective of
designing unmanned aerial vehicles which are autonomous,
agile and capable of flying in constrained environments
[1]. Birds are natural role models for designing micro
air vehicles (MAVs) wherein the aforementioned attributes
can be engineered. MAVs typically fly in a low Reynolds
number range of 103–105 [2] which coincides with that of
birds. Therefore, it is worth investigating the mechanics of
avian flight and making an attempt to reverse-engineer them.
Conversely, a study of the flight mechanics of MAVs can shed
light on several aspects of bird flight.

This paper contributes to the broader problem of
developing a flapping MAV capable of agile flight in
constrained environments. Chung and Dorothy [3] studied
a neurobiologically inspired controller for flapping flight,
and demonstrated it on a robotic testbed. Their controller
could switch in a stable and smooth fashion between flapping
and gliding flight. Among other phases of flight, gliding is

essential during landing and perching. This paper provides
the analytical foundations needed to design effective gliding
and landing strategies.

The objective of this paper is to describe a novel
bioinspired concept for MAVs. It is based on the observation
that birds lack a vertical tail, and they use their wings
effectively for control. Wing dihedral and incidence angles
are controlled actively as birds execute agile and even spatially
constrained manoeuvres. Complex manoeuvres require a
combination of open and closed loop capabilities. However,
the performance achievable in the closed loop (with control and
guidance) is contingent upon the limitations of the airframe.
The focus of this paper is on the airframe (open loop) rather
than feedback control.

The tailless aircraft in this paper has rigid wings each
of which can be rotated at the root to generate variable
incidence and dihedral. The dihedral and incidence angles
on both wings need not be equal. The concept of asymmetric
dihedral is used to explore yaw stability and control in the
absence of a vertical tail. Table 1 lists the symbols used in the
paper.
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Table 1. List of symbols.

Symbol Meaning

CL, CD coefficients of lift and drag
D,Y drag and side force
F, M force and moment vectors
JR,R, JL,L moment of inertia tensor of the right and left wings

in their respective wing root frames
JR, JL, J moment of inertia tensor of the right and left wings,

and the aircraft body in the aircraft body frame
L, M,N body axis rolling, pitching and yawing moments
Lβ

∂L

∂β
; Lp , Lr , Nβ , Np , Nr defined similarly

lw, lt longitudinal distance of the wing and tail aerodynamic
centres from the body frame origin

mw, m mass of each wing, and mass of the aircraft
p, q, r body axis roll, pitch, and yaw rates
rCG position vector of the aircraft centre of gravity
Sw, St area of each wing, and area of vertical tail
u, v, w body axis aircraft wind velocity components
uB aircraft velocity vector with components in

the body frame
V local wind velocity vector
X, Y,Z x-, y-, and z-component of force
α, β angle of attack and sideslip angle
βL, βR left- and right-wing sweep
γ, χ flight path angle and wind heading angle
δe elevator or horizontal tail deflection
δL, δR dihedral angle of left and right wing
ζ dihedral effectiveness ratio
φ, θ, ψ Euler angles
θL, θR left- and right-wing incidence
θa anti-symmetric wing incidence, θR = −θL = −θa

ω turn rate
ω{} angular velocity vector (see subscripts)
Subscripts
B aircraft body
L, R left and right wing, respectively

1.1. Literature review

The idea of using cant-angle winglets for control was
investigated experimentally by Bourdin, Gatto and Friswell
[4, 5] for larger aircraft operating at high Reynolds numbers.
On the other hand, this paper is focussed on MAVs flying
at low Reynolds number, and the analysis presented herein
is theoretical and computational in nature. The restriction to
MAVs comes from two factors. First, the articulated wing-
based mechanism proposed in this paper would be impractical
for larger aircraft. Second, the low flight speeds considered
here are characteristic of MAVs. Low flight speeds imply
that the local angle of attack distribution on the wing is
a nonlinear function of the angular velocity of the aircraft.
The nonlinearity manifests itself in, for example, the peculiar
relation between the turn rate and the commanded dihedral as
described later in this paper.

Fixed and flapping wing MAVs have been extensively
studied in the literature. The reader is referred to an excellent
compendium of papers [2] which showcases some of the work
done in this area until circa 2000. More recently, Costello
and Webb [6] demonstrated that articulated wing MAVs, with
wings hinged at the root, experience reduced gust sensitivity.
Wickenheiser and Garcia [7, 8] studied the dynamics of

morphing aircraft and demonstrated perching using, among
other forms of articulation, variable wing incidence. Reich
et al [9] experimentally studied the aerodynamic performance
of a wing of variable incidence for perching.

Stenfelt and Ringertz [10, 11] studied the stability
and control of tailless aircraft equipped with a split flap
mechanism, while Shtessel, Buffington and Banda [12]
designed a sliding mode-based controller for tailless fighter
aircraft. Recently, Obradovic and Subbarao [13] investigated
the power requirement for morphing, and used it as a basis
to compare wing morphing and the traditional aileron-based
control in different flight regimes.

The lateral stability and control of birds, and in particular,
the role of wing dihedral, have been studied extensively by
Sachs and co-authors [14–16]. Sachs has demonstrated that
for air vehicles whose size and speed (and hence, Reynolds
number) are similar to those of birds, wings are sufficient to
provide lateral stability thereby reducing, if not eliminating
altogether, the need for a vertical tail. Tran and Lind [17] have
studied numerically the stability of an aircraft equipped with
variable symmetric dihedral and incidence.

1.2. Main contributions

At a conceptual level, this paper is a study of yaw control
using asymmetric dihedral, a concept which was put forth by
Bourdin, Gatto and Friswell [4] along with detailed moment
calculations as well as elementary trim analysis. In contrast
with the earlier work, this paper is dedicated to MAVs whose
speed and size, and resultant low Reynolds numbers (103–105),
present several distinct characteristics from the point of view of
control and even stability. The small size of MAV wings makes
wing articulation practically feasible. Unlike conventional
fixed wing aircraft, an articulated wing aircraft changes its
configuration routinely and therefore, stability is closely tied
to the nature of the manoeuvre being executed. Another
feature of this work is the extensive use of bifurcation analysis
[18–20] to explore the dynamics of tailless aircraft
equipped with articulated wings. As demonstrated in this
paper, bifurcation analysis not only measures the stability
characteristics of the aircraft but also helps predict the
performance limitations that arise because of the use of
asymmetric dihedral.

Furthermore, this paper includes detailed theoretical
and linear computational analyses of the lateral dynamics.
Longitudinal dynamics are not affected by the absence of
a vertical stabilizer. Analytical expressions for lateral-
directional aerodynamic force and moment derivatives offer
a valuable insight into the manoeuvre dependence of stability
and help identify the source of lateral-directional instability,
which is subsequently verified computationally. The analytical
expressions also help identify potentially dangerous situations
where the control effectiveness of the dihedral may switch sign
in the midst of certain manoeuvres. This can not only stall
the manoeuvre but may cause an automatic control system to
destabilize the aircraft.

It is known that the wing dihedral angle can be varied
to perform slow, steep descents [14, 21]. In this paper,
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gliding flight trims have been computed numerically along
with their stability for the sake of completeness as well
as to identify bounds on longitudinal performance. A
knowledge of the longitudinal trims can help formulate landing
and perching strategies in spatially constrained environments
without resorting to manoeuvres like spin [22] and aid the
design of control laws for perching [23].

A nonlinear six degree-of-freedom model incorporating
dynamic centre of gravity (CG) variation is derived. It can be
used for flapping wing aircraft as well, and it is substantially
more complete than flapping models in the literature [3, 24].

Aerodynamic forces on the aircraft wings and the
horizontal tail are modelled using strip theory with
aerodynamic data from Uhlig [25]. A combination of linear
stability theory and bifurcation analysis [20] is used to study
the performance and stability of a six degree-of-freedom
aircraft model that incorporates the effect of dynamic CG
location as a function of the aircraft geometry. Performance
metrics of interest are (a) trim angle of attack, velocity,
and flight path angle for longitudinal flight assessment, and
(b) sideslip angle and turn rate for the lateral-directional
motion. Coordinated turns are studied using a modified
version of the constrained bifurcation analysis [20, 26].

It is interesting to note the roles played by wing incidence
and dihedral in turning flight. Turn rate is observed to be
sensitive to wing incidence and dihedral angle alike. It
is shown that wing incidence and dihedral can effectively
maintain zero sideslip and a large turn rate. However, when
steady turn trim states are computed at a constant flight speed,
the turning performance is seen to depend almost entirely on
the dihedral angles of the two wings, with minor dependence
on the wing incidence. The maximum achievable turn rate and
stability are sensitive to the commanded flight speed.

The ideas presented in this paper have been validated
experimentally. Some results obtained during open-loop
experiments have been presented in the paper. During the
experiments, the aircraft position was measured directly using
a VICON motion capture system consisting of eight 2 MP
cameras capable of operating at 200 Hz. Reflective markers
attached to the aircraft were used by the VICON system to track
the aircraft position and attitude. The VICON system and its
role have been illustrated in figure 1. Efforts are underway
to perform experiments with aircraft flying in the closed loop
with an automatic controller, e.g. see [23].

The paper is organized as follows. The mathematical
preliminaries are summarized in section 2. Section 3 derives
the dynamical equations for tailless articulated wing aircraft,
while section 4 describes the aircraft model used in the
subsequent analysis. In section 5, an analytical comparison of
differential dihedral and vertical tail vis-à-vis their role as yaw
control devices is provided. A linear analysis of lateral stability
is performed to provide insights into the lateral modes as well
as control effectiveness. A bifurcation analysis is performed to
identify symmetric as well as asymmetric flight equilibria and
their stability. Section 6 describes the experimental results.
Section 7 concludes the paper.

2. Preliminaries

In this section, the methods of trim computation and
bifurcation analysis, required in the subsequent analysis, are
briefly introduced. The reader is referred to the excellent
account by Lowenberg [19] for a tutorial introduction to
bifurcation analysis, while [18, 20] review its application to
problems in flight dynamics.

Numerical bifurcation analysis has two objectives:
(1) to correctly compute the trim states and (2) to identify their
stability. A linear analysis is incapable of performing task (1)
and therefore, numerical continuation is required. Numerical
continuation procedures compute the Jacobian matrix as part
of the trim computation process, and therefore, it need not
be computed again for stability analysis. Therefore, trim
computation and stability analysis can be performed together
in a very efficient manner, an advantage which would be lost
if one were to resort to a separate linear stability analysis.

Consider a set of ordinary differential equations ẋ =
f (x, u, λ), where x ∈ R

n are the states, u ∈ R is the control
input to be varied, and λ ∈ R

p are other system parameters.
A trim (x∗, u∗) is an equilibrium point of this differential
equation, i.e. f (x∗, u∗, λ) = 0. Given a control u∗, there may
exist several trim states (x∗, u∗). All of these trim states may
not be of interest. Once a trim state (x0, u0) is computed, the
Jacobian ∂f

∂x
is computed at that trim state. If it is non-singular,

it follows from the implicit function theorem that there
exists locally a unique branch of trim states passing through
(x0, u0). This trim branch is computed using numerical
continuation [27].

Suppose that the solutions of the dynamical system are
required to satisfy m physical constraints (e.g. zero sideslip),
where m < p. It is quite possible that m = 0, in which
case there are no constraints. The dynamical equations are
augmented with the constraint equations g(x, u, λ) = 0, and
an auxiliary equation called the pseudo-arc length equation.
The vector λ is split into two groups: λc ∈ R

m−p and
λu ∈ R

m. The latter is ‘freed’ to ensure that the enlarged
set of equations defines a well-posed problem. The former
is held fixed. A new state vector z = (x, u, λu) ∈ R

n+m+1 is
defined. Given an equilibrium solution z0 = (x0, u0, λu0), the
function fsolve in MATLABTM is used to compute the next
equilibrium solution z of the enlarged set of equations

f (z, λc) = 0

g(z, λc) = 0

τ T(z − z0) + uc = 0,

(1)

where uc is the step size. The vector τ satisfies[
∂f
∂z

∣∣∣∣∂g
∂z

]
τ = 0. (2)

The equilibrium z is then used to compute the next equilibrium
point, and this process is iterated to determine the equilibrium
surface. The pseudo-arc length equation (1) is critical in order
to track the solution curve past points where it turns around
on itself such that the tangent to the curve is perpendicular to
the continuation parameter axis. Such points are called limit
points [27].
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Figure 1. The VICON motion capture system, and its role in analysing and controlling indoor flight.

Figure 2. A schematic of the aircraft showing the dimensions and the coordinate systems used to model the aircraft.

The eigenvalues of the Jacobian ∂f

∂x
are used to deduce

the stability of a trim point. A trim point at which a trim
solution branch undergoes a change in stability is called a
bifurcation point. Bifurcations are important not only because
they indicate the onset of instability, but also because trim
branches or limit cycles originating from the bifurcation point
provide indications about the behaviour of the aircraft after
it has departed from the unstable trim state. One such
bifurcation point is the saddle node bifurcation at which a
solution branch ‘turns around’ in the state space, leading to
jumps [20]. Another commonly encountered bifurcation is the
Hopf bifurcation which gives rise to limit cycles (or oscillatory
behaviour). In this paper, the equilibria computed by the above
algorithm are plotted along with a stability-based legend which
allows for the identification of bifurcation points. Such plots
are called bifurcation diagrams [19].

The algorithm described above is obviously limited in
its capabilities. It cannot track limit cycles, perform branch
switching or explicitly identify bifurcation points. Despite
these limitations, as demonstrated in the paper, this algorithm
can provide a wealth of information about the aircraft
dynamics. An equilibrium analysis is useful because it helps to
locate potential instabilities, identify their nature, and predict
the behaviour of the aircraft after departure from the desired

trimmed condition should it be unstable. Bifurcation analysis
serves as a useful pointer to control design by identifying the
basin of attraction of each trim state.

3. Equations of motion for articulated wing aircraft

In this section, the equations of motion for an aircraft with
articulated wings have been derived. These equations are
complete in that they account for the variations in the CG
position as well as the moments of inertia due to wing rotations.
These equations can also be used to model the motion of
flapping wing aircraft as well.

3.1. Frames of reference

Figure 2 is a schematic diagram of the aircraft along with
the dimensions. The x, y, z axes are chosen as per the
standard conventions in flight mechanics. The body frame is
fixed to the CG, while the wing frame is constructed at every
spanwise station of interest. The origin of both frames may
accelerate and/or rotate. The moments of inertia are calculated
as functions of the dihedral and the incidence angles. The body
frame, denoted by B, is attached to the body with the x–z plane
coincident with the aircraft plane of symmetry when the wings
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are undeflected. The x-axis points towards the aircraft nose.
The z-axis points downwards, and the y-axis (pointing along
the right undeflected wing) is defined to create a right-handed
coordinate system (see figure 2).

Let the matrix T FG denote the rotation matrix which
transforms the components of a vector from the G frame to
F, where the frames F and G are arbitrary. The frame R is the
frame based at the right-wing root. Its x-axis coincides with
the x-axis of the B frame and it is related to the B frame
via a dihedral rotation δR at the wing root followed by a
rotation θR about the y-axis. The y-axis points along the wing
span. Let R1, R2, R3 denote the body-to-wing frame rotation
matrices for wing rotations about the root hinge corresponding
to sweep (βR), dihedral (δR) and incidence (θR), respectively.
Therefore,

R1 =
⎡
⎣ cos βR sin βR 0

− sin βR cos βR 0
0 0 1

⎤
⎦ ,

R2 =
⎡
⎣1 0 0

0 cos δR − sin δR

0 sin δR cos δR

⎤
⎦ ,

(3)

R3 =
⎡
⎣cos θR 0 − sin θR

0 1 0
sin θR 0 cos θR

⎤
⎦ . (4)

Since the sweep angle is set to βR = βL ≡ 0, we obtain the
following rotation matrix which connects the right-wing root
frame to the body frame:

T BR(δR, θR) =
⎡
⎣1 0 0

0 cos δR sin δR

0 − sin δR cos δR

⎤
⎦

×
⎡
⎣ cos θR 0 sin θR

0 1 0
− sin θR 0 cos θR

⎤
⎦ . (5)

A similar matrix T BL(δL, θL) can be derived for the left wing.

3.2. Equations of motion

In the following equations, given a vector p = [p1, p2, p3],
define

S(p) =
⎡
⎣ 0 −p3 p2

p3 0 −p1

−p2 p1 0

⎤
⎦ . (6)

The equations of translational motion are derived first.
Let rcg denote the position vector of the centre of gravity (CG)
of the aircraft, while rcg,R and rcg,L denote the position vectors
of the CG of the right and left wings in the local wing frame,
respectively. Then, the total translational momentum is given
by

p = m(uB + S(ωB)rcg)

+ mw(S(ωR)T BRrcg,R + S(ωL)T BLrcg,L). (7)

Using Newton’s second law, we obtain

F = m(u̇B + S(ωB)uB + S(ω̇B)rcg + S(ωB)ṙcg + (S2(ωB)rcg)

+ mwS(ω̇R)T BRrcg,R + mwS2(ωR)T BRrcg,R

+ mwS(ω̇L)T BLrcg,L + mwS2(ωL)T BLrcg,L, (8)

and the CG variation is given by

ṙcg = mw

m
(S(ωR)T BRrcg,R + S(ωL)T BLrcg,L). (9)

This CG variation could play an important role in cases where
the wing weight is substantial and where the CG position is
used as a control variable, as in [28].

The total angular momentum is given by

h = mS(rcg)uB + JωB + JRωR + JLωL,
(10)

JR = T �
BT JR,RT BT , JL = T �

BLJL,LT BL.

Therefore, the dynamical equations are given by

M = mS(ṙcg)uB + mS(rcg)u̇B + mS(ωB)S(rcg)uB + Jω̇B

+ J̇ωB + S(ωB)JωB + JRω̇R + J̇RωR + S(ωB)JRωR

+ JLω̇L + J̇LωL + S(ωB)JLωL, (11)

where

J̇R = T �
BR(JR,RS(ωR) − S(ωR)JR,R)T BR,

J̇L = T �
BL(JL,LS(ωL) − S(ωL)JL,L)T BL,

J̇ = J̇R + J̇L, (12)

and

M = Maero + S(rcg)m

⎡
⎣ −g sin θ

g cos θ sin φ

g cos θ cos φ

⎤
⎦ . (13)

In the above equations, JR,R and JL,L denote the moments
of inertia of the right and left wings, respectively, in their
respective local coordinate frames based at the wing root.

For the numerical analysis, the aerodynamic forces and
moments are calculated using strip theory. As a method,
strip theory is used for aircraft aeroelastic simulations [29]
and routinely for blade element theory in the rotorcraft field
[30]. Strip theory approaches have also been applied to
wings in a trailing vortex flow and aircraft spin prediction (see
[31–34] and others cited therein). It seems that only recently
has the general strip theory approach been applied in realtime
simulation for fixed-wing force and moment calculations
[35–39].

In strip theory, the wing is divided into chordwise
segments. The local velocity components on each segment
are computed to obtain the local angle of attack and sideslip.
The lift and drag on each segment are calculated using the
local angle of attack and sideslip. The lift and drag forces are
summed over the entire wing to yield the net aerodynamic
force. The moment due to the force on each segment is
computed about the reference point, and these moments are
summed over the entire wing to obtain the net aerodynamic
moment. Although the aerodynamic contributions of the
fuselage and the propulsion mechanism have been ignored
here, the results presented in this paper can be readily extended
when these aerodynamic contributions are taken into account.

Without any loss of generality, consider the right wing
of an aircraft, with (semi) span b/2 and chord c(y), where y
denotes the spanwise location. Let Vcg = [u v w]� denote the
body axis wind velocity of the aircraft. Let [p q r] denote the
body axis angular velocity of the fuselage.
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(a) (b)

Figure 3. The figure on the left shows ParkZone R©Vapor, the aircraft model used for the analysis in this paper. The size of the Vapor is
similar to that of small birds such as the barn swallow shown on the right. (a) ParkZone R©Vapor: the aircraft model considered in the paper
(without the vertical tail). (b) A barn swallow (Hirundo rustica) in flight, taken in Milwaukee, WI (source: wikimedia.org, author: ‘Dori’,
licence: CC BY-SA 3.0, available at: http://commons.wikimedia.org/wiki/File:Barn_swallow_6909.jpg).

The angular velocity perceived at a spanwise strip at a
distance y along the span is given by

�R =
⎡
⎣p

q

r

⎤
⎦ +

⎡
⎣ 0

0
β̇R

⎤
⎦ + RT

1

⎡
⎣−δ̇R

0
0

⎤
⎦ + RT

1 RT
2

⎡
⎣ 0

θ̇R

0

⎤
⎦ (14)

and the local velocity at that strip on the right wing is

V(y) = Vcg + S(�R)rac, (15)

where rac is the position vector of the aerodynamic centre of
the station given by

rac = RT
1 RT

2 RT
3

⎡
⎣xac

y

0

⎤
⎦ , (16)

where xac is the chordwise location of the aerodynamic centre
with respect to the mid-chord. It is assumed to be c/4. The
local aerodynamic force at the station is given by the vector
sum of the lift and the drag, with components written in the
body frame:

dF = 0.5ρ‖V(y)‖2c(y)(CLl/‖l‖ + CDd/‖d‖) dy, (17)

where

l = −S(V(y))RT
1 RT

2 RT
3 [0 1 0]�/‖V(y)‖, (18)

d = −V(y)/‖V(y)‖. (19)

Section 4 discusses the CL and CD expressions in detail. The
local aerodynamic moment at the station is given by

dM = S(r)dF + ρ‖V(y)‖2c(y)Cmac R
T
1 RT

2 RT
3 [0 1 0]� dy.

(20)

The total aerodynamic force and moment are obtained by
integrating the above expressions, performed in practice by
using strip theory, as explained earlier. The forces can be
projected onto the wind axes and these, together with the
moments, can be substituted into equations (8) and (13).
The term Cmac , as explained in section 5, plays an important
role in determining the effectiveness of the wing dihedral for
yaw control.

The kinematic equations relate the angular velocity of the
aircraft to the rates of change of the Euler angles:

φ̇ = p + q sin φ tan θ + r cos φ tan θ

θ̇ = q cos φ − r sin φ (21)

ψ̇ = (q sin φ + r cos φ)/ cos θ.

The equations which relate the position of the aircraft to its
translational velocity are essentially decoupled from the flight
dynamics, and are given by

Ẋ = V cos γ cos χ

Ẏ = V cos γ sin χ (22)

Ż = −V sin γ.

The flight path angle (γ ) and the wind axis heading angle (χ )
in equation (22) are defined as follows:

sin γ = cos α cos β sin θ − sin β sin φ cos θ

− sin α cos β cos φ cos θ

sin χ cos γ = cos α cos β cos θ sin ψ

+ sin β(sin φ sin θ sin ψ + cos φ cos ψ)

+ sin α cos β(cos φ sin θ sin ψ − sin φ cos ψ). (23)

The turn rate is given by ω = ψ̇ . If θ̇ = φ̇ = 0, it follows that

ω = ψ̇ = sign(ψ̇)
√

p2 + q2 + r2. (24)

The above expression is used to compute the equilibrium turn
rate during trim analysis.

4. Aircraft model and aerodynamics

The aircraft model considered in this paper is derived from
the Vapor shown in figure 3(a)1 by removing the vertical tail
and the propeller. To simplify the analysis, the aerodynamic
contributions of the fuselage and the propulsive mechanism
are neglected with the understanding that they can be readily
added within the conceptual framework of this paper. The

1 http://www.parkzone.com/Products/Default.aspx?ProdID=PKZ3380.
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Figure 4. Experimentally obtained aerodynamic data [25].

wings have an elliptic planform. As explained in the next
section, the problem of adverse yaw in the absence of a vertical
tail may be ameliorated by placing the CG behind the wing
AC. The dimensions of the Vapor are similar to those of small
birds such as the barn swallow shown in figure 3(b)2.

The lift and drag coefficients of the wing and tail airfoils,
adapted from values determined experimentally [25] for the
Vapor itself (shown in figure 3(a)) at a Reynolds number of
20 000, are given by

CL = 0.28295 + 2.00417α, CD = 0.0346 + 0.3438C2
L,

(25)

where α is measured in radians. Using thin airfoil theory
[40], it was determined that Cmac = −0.1311. The actual
experimental plot has been shown in figure 4. The CL and
CD expressions in equation (25) are obtained by averaging
only over the red points in figure 4. The rest of the points in
figure 4 (marked in black) represent data collected at high
values of pitch rate and α̇, and are not relevant to the discussion
in this paper. During the experiments, for α > 25 deg, α̇

was seen to be substantial and therefore, the coefficients in
equation (25) are reliable only up to α = 25 deg.

The aircraft weighs 12 g, including a ballast mass added
to the nose of the aircraft for placing the CG around half-wing-
chord under nominal conditions, i.e. when the wing dihedral
and incidence are both zero. The aircraft is 29.7 cm long
from nose to tail, and under nominal conditions, the distance
between the AC and the CG is xac = 3.6 cm. The horizontal
tail is located 26.1 cm behind the wing root AC. The limiting
value of the horizontal tail deflection is assumed to be 30 deg
in both directions. The limiting value of the wing dihedral is
assumed to be 60 deg on either side, while that of the wing
incidence is 15 deg.

2 http://commons.wikimedia.org/wiki/File:Barn_swallow_6909.jpg.

5. Results on stability and performance

This section describes the main results of the paper. The
effectiveness of wing dihedral for yaw control is compared
with that of the vertical tail in section 5.1. Sections 5.2 and
5.3 describe a linear analysis of lateral-directional stability
and lay the foundation for a formal analysis of the control
effectiveness of wing dihedral for yaw control in section 5.4
as well as the bifurcation analysis in sections 5.5 (longitudinal
flight) and 5.6 (turning flight).

5.1. Analytical comparison with the vertical tail

Figure 5 illustrates the physics underlying the use of wing
dihedral as a control. Increasing the wing dihedral reduces
the force acting in the body z-direction, and generates a side
force. The reduced z-force affects the aircraft flight path angle
and angle of attack, and hence the flight speed. On the other
hand, the side force can be used for providing the centripetal
force for turning and as a source of the yawing moment. In
particular, if the CG is located behind the line of action of the
side force, then a positive side force produces a positive yawing
moment and vice versa (see figure 2 for the sign conventions).
It follows that a positive rolling moment (wherein the lift on
the left wing is higher than the right wing) is accompanied by a
positive yawing moment if the wings have a positive dihedral
deflection. Consequently, the adverse yaw produced due to
rolling is reduced.

Figure 5 qualitatively suggests candidate dihedral
deflections of the two wings in order to perform a turn. For
example, to turn right, the left wing could be deflected upwards
and the right wing downwards about a symmetric setting.
While such a setting would provide the required side force, it
could lead to an adverse yaw moment arising from the z-axis
projections of the pitching moments about the AC of the two
wings. The adverse yaw moment, which would be produced
by wings with substantial positive camber, could potentially
inhibit the turn.

7
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Figure 5. Illustration of the physics underlying the use of dihedral as a control. The dark conspicuous dot in the figures is the aircraft CG.

In order to appreciate the utility and the limitations of
using differential dihedral as the yaw control mechanism, the
yawing moment produced by the differential dihedral should
be compared with that of a conventional vertical tail. In order
to provide a basis for a fair comparison, the deflection of the
tail and the differential dihedral are kept identical. Consider a
rectangular vertical tail with a span bt , chord ct , area St = btct ,
and located at a distance lt behind the CG. The wing has a
semi-span b/2 and chord c. Let Sw denote the area of each
wing, and let lw denote the x-component of the moment arm
of the side force with respect to the CG, where lw > 0 is
the wing AC that is ahead of the CG. The yawing moment
produced by the vertical tail is calculated by assuming that the
dihedral deflection of both wings is zero. In order to simplify
the analysis, let αw denote the effective angle of attack of the
wing, i.e. CL(α) = CLα

αw. Generally, αw �= α for cambered
wings.

Assuming a linear relation between the lift and the angle of
attack, the yawing moment generated by the tail for a deflection
βt > 0 is equal to Nt = q∞St ltCLα

βt , where q∞ is the dynamic
pressure. The moment generated by a dihedral deflection, δ,
of the left wing, while that of the right wing is zero, is given
by

Nw = q∞Sw(lwCLα
αw + cCmac)δ. (26)

If βt = δ, then the dihedral effectiveness ratio, ζ = Nw/Nt , is
given by

ζ = Swlw

St lt
αw +

Swc

St lt

Cmac

CLα

. (27)

Clearly, the dihedral is more effective for yaw control
at high angles of attack. Equation (27) also suggests that
the dihedral is better than the vertical tail when lt is small.

The ability to change wing dihedral is built into the birds in
the form of their ability to flap their wings for propulsion.
Hence, no additional mechanisms are needed for yaw control.
Ornithopters, too, can benefit from differential dihedral-based
yaw control in a similar manner.

Remark. For positively cambered wings, Cmac < 0.
Hence the second term on the right-hand side of (27) is
negative. This term not only reduces ζ , but could also render
it negative. In the latter case, the left wing could be deflected
downwards, or the right wing could be deflected instead of the
left wing. Alternately, if the wing camber can be controlled
independently, the camber could be chosen to make Cmac small
enough so that the dihedral effectiveness ratio, ζ , is positive.
There is no evidence in the literature to suggest whether birds
perform cambering for the aforementioned purpose. It is
known that cambering can be used for other purposes such
as high lift generation, delaying stall and flutter prevention
[41]. From a design perspective, the argument stated here
suggests that the wing airfoil should be chosen with as small a
camber as possible when the wing dihedral is to be employed
for yaw control.

The idea of using wing dihedral for control is particularly
useful when the wings are flexible, because flexible wings
bend and twist spontaneously under aerodynamic loading. The
dihedral angle at a given point on the wing is equal to the sum
of the slope of the bending displacement and the wing slope at
the root. Since bending and twisting are coupled, wing twist
that can be used bring about a passive proverse change in the
wing dihedral [42].

A brief theoretical analysis is in order before a
computational analysis is performed. The objectives of the

8
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Table 2. Stability derivatives for a tailless aircraft with an articulated wing.

Symmetric flight Turning flight
Derivative (δL = δR = δ) (δL ≈ −δR) Stability condition

Lβ Stable Stable when δL + δR > 0 Lβ < 0
(see section 5.4)

Lp Stable Stable Lp < 0
Nβ Unstable Unstable Nβ > 0
Nr Stable Unstable, but stable when Nr < 0

(drag reduces stability) sign(p) �= sign(δL − δR) (section 5.4)

next three subsections are to (a) derive analytical expressions
for estimating the contribution from the wings to force and
moment derivatives, (b) identify the lateral modes using the
standard fourth order model, and (c) estimate the sign of the
control effectiveness of asymmetric dihedral for turning.

5.2. Analytical approximations to lateral-directional stability

The lift and drag forces produced by the wing as well as
their moments about the origin of the body frame can be
resolved along the body axes. In particular, summing the
body axis components of the net moment due to lift and drag
yields the net rolling, pitching and yawing moments. The
stability of aircraft depends primarily on the three aerodynamic
moments and their derivatives with respect to the aircraft
angular velocity, angle of attack and sideslip.

Let α and β denote the angle of attack and sideslip,
i.e. w = u tan α and v = V∞ sin β where u, v and w are
components of the aircraft velocity along the aircraft body
axes. Consider the aerodynamic centre of a wing cross section,
with coordinates [x, y, 0] in the wing frame. Ignoring the
angle of incidence of the wing with respect to the fuselage,
the local wind velocity at the aerodynamic centre in question
is given by

vloc =
⎡
⎣ u − y(q sin δ + r cos δ)

v cos δ − w sin δ + x(q sin δ + w cos δ)

v sin δ + w cos δ + py − x(q cos δ − r sin δ)

⎤
⎦ . (28)

If q is ignored to restrict the analysis to lateral-directional
motion, it follows that the local angle of attack is given by

αloc ≈ β sin δ + α cos δ + py+rx sin δ

u

1 − ry

u
cos δ

, (29)

which can be simplified further using binomial expansion of
the denominator to yield

αloc ≈ β sin δ + α cos δ +
py + rx sin δ

u

+
ry

u
α cos δ +

pry2 cos δ

u2
. (30)

At low to moderate angles of attack, the net force along
the body z-axis is approximated by Z ∝ αloc. Furthermore,
the rolling and yawing moments can be approximated by

L ∝ ZL − ZR, N ∝ (ZL sin δL − ZR sin δR). (31)

The lateral-directional derivatives can be approximated as
follows:

Lβ ∝ −u2(δL + δR), Lp ∝ −ub, Lr ∝ −ubα (32)

Nβ ∝ −u2(δ2
L + δ2

R), Np ∝ −ub(δL + δR) + r
b2

2
(δL − δR),

Nr ∝ −ubα(δL + δR) +

(
pb2

2

)
(δL − δR). (33)

Useful information about aircraft stability can be gleaned from
equations (32) and (33), which has been tabulated in table 2.

Based on the results in table 2, it is clear that the aircraft
would be expected to be unstable in most flight regimes. At
least two stability derivatives suggest the possibility of stability
in some select turn regimes. However, in rapid turn regimes,
the flight dynamics are far too strongly coupled to draw reliable
conclusions from this linear, decoupled analysis. Furthermore,
because the stability derivatives depend strongly on the wing
dihedral angle, which is in turn a function of the aircraft
manoeuvre, it follows that stability is tied very closely to the
nature of the manoeuvre being executed. The observation
is peculiar to aircraft with articulated wings. In conventional
aircraft with fixed wings, although stability derivatives depend
on aircraft states, they are essentially independent of the
control surface deflection.

5.3. Lateral-directional stability

Figure 6(a) shows the root locus plot for a sample flight
speed of 2 m s−1. The highly stable roll mode is not shown
here. The root locus plot is obtained by varying the angle of
attack for four candidate symmetric dihedral deflections: 6 deg
(black), 17 deg (blue), 28 deg (red), and 40 deg (magenta). The
root locus plot helps to verify some of the observations in
section 5.2. The unstable stability derivatives observed in
table 2 manifest in the form of an unstable Dutch roll mode.
Figure 6(b) plots the real part of the rightmost eigenvalue,
which measures the stability margin of the dynamics. The
Dutch roll mode is seen to stabilize around α = 7 deg for
three candidate dihedral deflections, except for δ = 6 deg. In
the latter case, the complex conjugate Dutch roll eigenvalues
merge on the real axis, and one eigenvalue moves to the
right with increasing α worsening the instability. Clearly, the
Dutch roll mode shows a qualitatively different, more desirable
behaviour for large dihedral deflections.

Figure 6(c) is a plot of the real part of the rightmost
eigenvalue for V = 3 m s−1. The effect of flight speed
is summed up in the observation that the Dutch roll mode
stabilizes at a much higher angle of attack for the three
larger symmetric dihedral deflections. A strong dependence
of stability characteristics on the flight speed is another

9
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Figure 6. Root locus plot showing lateral-directional eigenvalues as functions of the angle of attack for candidate symmetric wing dihedral
deflections. The roll mode is not shown in the root locus plot. The real part of the rightmost eigenvalue is a measure of the stability margin
when the system is stable. (a) Root locus for V = 2 m s−1. (b) Real part of the rightmost eigenvalue for V = 2 m s−1. (c) Real part of the
rightmost eigenvalue for V = 3 m s−1.

feature of the low speed flight of MAVs. In contrast, the
stability of faster, heavier fixed wing aircraft depends primarily
on the angle of attack in pre-stall, incompressible flow regimes.

5.4. Control effectiveness for turning

The wing dihedral angles may be changed asymmetrically
for executing turns as explained earlier in section 5.1. The
challenge would be to design control laws for controlling the
yaw rate and the roll rate for which it is necessary to determine
the control effectiveness of the wing dihedral. Specifically,
the control effectiveness is measured in terms of incremental
rolling and yawing moments generated by an incremental
change in the wing dihedral angles.

A logical scheme for designing a yaw control law would
be to use δL–δR to control the turning rate. This is akin
to controlling the aircraft bank angle as a function of the
commanded turn rate. From equation (30), it is clear that
the incremental change in αloc is a nonlinear function of δL–δR

and it depends on angular velocity of the aircraft as well.
Therefore, it is perfectly possible that the sign of the control
effectiveness need not be uniform across the flight regime. The
yaw control effectiveness is particularly interesting because of
its strong sensitivity to the dihedral angles.

Figures 7(a)–(c) plot the sign of the control effectiveness,
i.e. sign

(
�N

�(δL−δR)

)
, on a p−r grid for angles of attack

of 5.73 deg (0.1 rad), 8.595 deg (0.15 rad) and 11.46 deg
(0.2 rad). Similar plots for other angles of attack have been

omitted for brevity. The plots clearly show that the sign of
the control effectiveness is negative at low angles of attack.
The sign depends strongly on the angular rates between angles
of attack of 6 deg and 12 deg, and it is positive uniformly
thereafter. The sign of the control effectiveness is usually
assumed to be known a priori while designing control laws.
The challenge involved in designing a sound turning flight
controller is captured in figure 7.

5.5. Stability and longitudinal performance of symmetric
configurations

This subsection illustrates the effect of dihedral on the
performance and stability when the aircraft configuration is
symmetric, i.e. δR = δL = δ. The wing incidence and sweep
are both set to zero.

The following notation has been adopted for the
bifurcation diagrams: an asterisk ‘∗’ denotes an unstable
equilibrium where eigenvalues with positive real parts are all
real. Conversely, an empty circle ‘◦’ denotes an unstable
equilibrium where the eigenvalues with positive real parts arise
in complex conjugate pairs. A filled circle (·), occasionally
coloured for clarity, denotes an unstable equilibrium where the
eigenvalues with positive real parts consist of real as well as
complex conjugate eigenvalues. Bifurcation points denote a
qualitative change in the stability of the aircraft. Interestingly
enough, no stable trims were observed for the aircraft.
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Figure 7. Plots showing the sign of the control effectiveness, sign( �N

�(δL−δR)
), as a function of the angle of attack, roll rate and yaw rate.

(a) Control effectiveness at α = 5.73 deg. (b) Control effectiveness at α = 8.595 deg. (c) Control effectiveness at α = 11.46 deg.

A key observation is that the use of symmetric dihedral
offers the possibility of independently controlling two of
the three longitudinal performance metrics, namely the flight
speed, angle of attack and the flight path angle. This cannot
be achieved in fixed wing aircraft without variable thrust
or variable dihedral. The Euler pitch angle would be an
enterprising addition to the list of variables, with applications
to airborne visual tracking of other airborne vehicles or
ground-based objects.

Figures 8(a) and (b) show the flight path angle and the
angle of attack, respectively, as functions of the wing dihedral
angle when the flight speed is held at an arbitrarily chosen
value 2.8 m s−1. The wing dihedral is varied between −50
and 50 deg, and figure 8(c) shows the elevator schedule, as
a function of the wing dihedral, required to maintain the
aforementioned flight speed.

All the equilibria are laterally unstable. It is worth
pointing out that the longitudinal modes are stable. The
equilibria in the small patch between δ = −33 deg and
δ = 0 are unstable with a pair of complex conjugate values,
while for all other equilibria, the positive eigenvalues are
real. An aircraft trimmed at any of these equilibria would
diverge away from it, and the post-departure behaviour can be
determined only after further trim analysis or simulations. The
steady states constituting post-departure behaviour would not
be routinely flown by the aircraft and, as such, they would
represent highly undesirable flight conditions. Hence, no

attempt has been made to determine the post-departure steady
states as part of the bifurcation analysis.

Figure 9 shows a simulated time history of the aircraft
motion. The wing dihedral angles were both set to 10 deg,
while the elevator was set to −10 deg. The initial angle of
attack was 5 deg, while all the lateral variables (β, p, r, φ)
were set to zero. The aircraft seems to stabilize for the first 4 s
before departing rapidly into a fast spin-like dive. Since the
initial value of all lateral states was zero, and the longitudinal
modes are stable, the aircraft tends to stabilize itself in the
absence of any lateral inputs or disturbances. The lateral
variables acquire non-zero values from numerical integration
errors. The sideslip and the lateral angular rates build up due
to the lateral instability, while the pitch rate and angle of attack
are affected by the lateral–longitudinal coupling.

Remark. Strictly speaking, the simulation time histories in
figure 9 are of limited accuracy because the aerodynamic data
are available up to an angle of attack of 25 deg only. However,
the aforementioned explanation about aircraft stability is
correct because it pertains to the low-α trim states.

5.6. Lateral stability and performance

The wing incidence angles can be set anti-symmetrically on
the two wings to generate rolling moment, and differential
dihedral can serve as a yaw control mechanism as explained
earlier in the paper. The equilibrium turn rate, defined in
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Figure 8. Bifurcation diagrams showing γ and α versus symmetric dihedral (i.e. δR = δL = δ), and the corresponding elevator deflection to
hold the speed fixed at V = 2.8m s−1. (a) Angle of attack as a function of dihedral. (b) Flight path angle as a function of the dihedral.
(c) Elevator as a function of the dihedral.
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Figure 9. Simulated time history of the aircraft motion with the dihedral angle of both wings fixed at 10 deg. All lateral variables, namely
the sidelip, roll rate, yaw rate and the Euler roll angle, were initialized at zero. (a) Angle of attack and sideslip time histories. (b) Time
histories of the roll, pitch and yaw rates. (c) Trajectory in the x, y, z plane.
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Figure 10. Case 1: turn rate, sideslip and flight speed as functions of the anti-symmetric wing incidence. The wing dihedral angles were
fixed at 29 deg. (a) Turn rate (ω) as a function of antisymmetric wing incidence (left wing positive). (b) Sideslip (β) as a function of
antisymmetric wing incidence. (c) Flight speed (V) as a function of antisymmetric wing incidence.

Table 3. Four cases considered in this section and their physical significance.

Dihedral angles Incidence angles Constraints Physical significance

Symmetric, non-zero Anti-symmetric None Turn using just the wing incidence
δR = 0, δL freed Anti-symmetric β = 0 Turn and maintain zero sideslip
δL �= δR Zero β = 0 Turn using only the wing dihedral
(asymmetric variation) and maintain zero sideslip
Asymmetric Anti-symmetric β = 0, Compute achievable turn rate for given

V prescribed speed and maintain zero sideslip

equation 24, is an important agility metric for an aircraft [44].
Bifurcation analysis is used for analysing performance and
stability for the four benchmark cases in table 3.

5.6.1. Case 1 (variable θL; θR = −θL; δL = δR held
fixed). Consider the first case where the wing incidence is
varied anti-symmetrically. Physically, this case represents
a turn without any dedicated yaw control mechanism.
Instead, the roll rate generated by the anti-symmetric wing
incidence angles, coupled with the dihedral effect modelled in
section 5.2, leads to a yawing moment which, in turn, generates
the yaw rate. Because there is no dedicated yaw controller,
the sideslip is not regulated and grows with increasing turn
rate.

Figures 10(a)–(c) plot the turn rate ω, sideslip angle β

and the flight speed V as functions of the incidence angle
when δ = 29 deg. It is observed that large values of turn rate
are achieved with relatively small values of wing incidence.
The sideslip angle and the flight speed increase as the turn rate
increases with increasing wing incidence. The sideslip angle
eventually builds up to nearly 18 deg, while the flight speed is
consistently greater than 3.1 m s−1. All trim solutions are seen
to be unstable with a positive real eigenvalue.

Given the subsequent increase in sideslip and flight speed
with increasing turn rate when the dihedral angles on the two
wings are equal and constant, it is valid to ask whether rapid
turns can be performed while maintaining zero sideslip and
a prescribed flight speed. An alternate way of restating this
question is to ask whether an arbitrary desired turn rate can
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Figure 11. Case 2: coordinated turn trims as a function of anti-symmetric wing incidence. (a) Turn rate (ω) as a function of antisymmetric
wing incidence with constraint β = 0. (b) Flight speed (V) as a function of antisymmetric wing incidence with constraint β = 0. (c) Wing
dihedral δL required to maintain β = 0.

be achieved for a given flight speed and with zero sideslip.
In order to accommodate constraint equations corresponding
to zero sideslip and constant flight speed, the corresponding
control parameters, in this case the dihedral angles of both
wings, are ‘freed’, i.e. treated as de facto state variables. The
resulting larger set of equations is then solved to compute
the aircraft trim states and control inputs needed to achieve
those trims. In order to infer the stability of the trim states,
the Jacobian corresponding to the original set of differential
equations is isolated, and its eigenvalues are computed.

5.6.2. Case 2 (variable θL; θL = −θR; δL free for β = 0;
δR = 0). Consider the second case where the sideslip is
required to be zero, while the flight speed is not constrained.

The left wing dihedral is freed to provide the yawing
moment necessary to regulate sidelsip to zero, while the right-
wing dihedral is held fixed at zero. As an alternative, the
right dihedral may be scheduled to maintain some other flight
parameter, as illustrated later in the section. Figures 11(a)–(c)
plot the turn rate, the flight speed and the left wing dihedral
as functions of the antisymmetric wing incidence. All trim
solutions are seen to be unstable. Initially, increasing ω and
δL are accompanied by a reduction in the wing incidence.
Thereafter, the turn rate and the left wing dihedral increase
monotonically with the wing incidence. The dihedral angle

required to maintain zero sideslip is close to its saturation
value of 60 deg when the wing incidence is 4 deg and the
corresponding value of turn rate is nearly 140 deg s−1.

Remark. This case represents the standard coordinated
turn: the asymmetric wing incidence angles (like ailerons)
are used to maintain roll equilibrium, while the left dihedral
maintains equilibrium in yaw. The observation that the wing
incidence angle is not very large suggests that controlling the
wing dihedral angles alone may suffice to maintain the roll and
yaw equilibrium across a range of turn rates.

5.6.3. Case 3 (θL = θR = 0; variable δL; δR freed for
β = 0). Consider the third case where the wing incidence
is held fixed at zero. The left wing dihedral angle is varied
independently, while the right-wing dihedral is scheduled to
maintain zero sideslip. This case is presented to show that
the wing dihedral angles alone are capable of controlling a
turn. Alternately, this case may be viewed as a redundancy
to accommodate failures in the mechanism to control wing
incidence. Physically, an asymmetric dihedral deflection of
the wings leads to an asymmetry in the lift distribution on the
two wings which, in turn, leads to rolling as well as yawing
moments. The two moments can be controlled independently
by choosing the wing dihedral angles appropriately.
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Figure 12. Case 3: coordinated turn trims as functions of the left wing dihedral. The short arrow indicates a reference solution, while the
long arrows track ω, V and δR as δL is varied. Points A, B, C and D are Hopf bifurcations. (a) Turn rate as a function of the left wing dihedral,
with β = 0. (b) Flight speed as a function of the left wing dihedral, with β = 0. (c) Right-wing dihedral required to maintain β = 0.

Figures 12(a)–(c) plot the turn rate, flight speed and
the right-wing dihedral angle, respectively, as a function of
the left wing dihedral. The equilibrium surface topology is
very different from cases 1 and 2. The equilibrium surface
is a closed loop. The left- and right-wing dihedral angles
can be set to achieve fairly large turn rates, as evident in
figure 12(a). Interestingly enough, a larger anhedral (negative
dihedral) deflection is required of both wings as compared
to the upward dihedral deflection. It is helpful to recall
that a black asterisk ‘∗’ denotes an equilibrium with positive
real eigenvalues, while a magenta filled circle (·) denotes an
equilibrium with positive real as well as positive complex
conjugate eigenvalues. It follows that points A, B, C and D in
figure 12 are Hopf bifurcations. In segments AD and BC, the
aircraft demonstrates oscillatory behaviour with large angular
rates, as in oscillatory spins. On the other hand, it diverges
from segments AB and CD to equilibrium steady states not
shown in figure 12.

Remark. This case serves as a useful pointer to control
design. The aircraft would perform routine turns in the close
vicinity of trims between the Hopf bifurcations C and D, which
have a divergent yaw instability. When the trims between C
and D are stabilized by linear yaw rate feedback, the following

situation is observed [43]: the aircraft can be made to enter a
rapid turn, but the same feedback law does not help it recover
to straight and level flight. Instead, the aircraft performs limit
cycle oscillations, as one would expect from the existence
of Hopf bifurcations C and D. Aircraft similar to the one
considered in this paper would exhibit similar nuances. Instead
of a linear yaw rate feedback, a nonlinear yaw rate feedback
is required to recover the aircraft to stable, wings level flight
from a turn.

5.6.4. Case 4 (variable θL, θR = −θL; δL and δR freed
for β = 0 and constant V). Consider the fourth case, a
turn where the flight speed is held constant at an arbitrarily
chosen value of V = 3.0 m s−1 and the sideslip is regulated at
zero. As in the first two cases, the wing incidence is varied
as the independent parameter, while the two dihedral angles
are freed to maintain the flight speed and the sideslip at their
respective desired values. Figure 13(a) plots the turn rate as
a function of the wing incidence. It is apparent that the wing
incidence is much smaller than in figure 10, and the turn rate
does not increase monotonically with wing incidence. Instead,
the equilibria trace a figure-of-eight in figure 13(a) which
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Figure 13. Case 4: coordinated turn trims with left- and right-wing dihedrals varied asymmetrically. Each plot carries two arrows. The
short arrow denotes a reference solution, while the long arrow helps track the variation of the turn rate and δR starting from the reference
solution. (a) Turn rate as a function of the anti-symmetric wing incidence with constraints β = 0 and V = 3 m s−1. (b) Left wing dihedral as
a function of the anti-symmetric wing incidence with constraint β = 0 and V = 3 m s−1. (c) Right-wing dihedral required to maintain β = 0
and V = 3 m s−1.

limits the maximum attainable turn rate while, simultaneously,
giving rise to multiple equilibrium solutions for a given value
of wing incidence. All the equilibrium solutions are observed
to be unstable. Figures 13(b) and (c) plot the left- and right-
wing dihedral angles as functions of the wing incidence. The
short arrow on each plot indicates a reference solution, and the
long arrows help track ω, δL and δR as the wing incidence is
varied. It is interesting to note that the wing dihedral angles
become the primary drivers of the turn rate, while the wing
incidence plays a secondary role in a coordinated turn at a
constant speed. Figure 14 is a 3D plot of the turn rate and
the wing dihedral angles and presents a clearer picture of the
equilibrium surface topology. The projections of the closed
curve in figure 14 onto the ω–δL and δL–δR planes are similar
to figures 12(a) and (c).

Aircraft stability and performance are sensitive to the
flight speed chosen for the turn which is, in turn, governed
by the elevator deflection. In the above case, for example, in
order to perform steady turns at 2.8 m s−1 instead of 3 m s−1,
the elevator deflection has to be increased beyond the previous
value of −11.4 deg. The elevator was fixed at −13.7 deg
(−0.24 rad) and steady turn trims were computed. Figure 15
shows the turn rate as a function of wing incidence when
the dihedral angles on the two wings are scheduled to
maintain the flight speed at 2.8 m s−1 and regulate the
sideslip.
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Figure 14. 3D plot of the turn rate and the wing dihedral angles
when the sideslip is held fixed at 0 and the flight speed at 3.0 m s−1.

Remark. Plots showing the dihedral angle variation are
not included for brevity. A comparison of figures 13(a) and
15 shows that the maximum turn rate increases significantly
when a lower flight speed is maintained. Furthermore, some
of the turn equilibria are now unstable with a pair of positive
complex conjugate eigenvalues. This could result, possibly, in
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Figure 15. Turn rate as a function of anti-symmetric wing incidence
with the constraints β = 0 and V = 2.8 m s−1. Recall that asterisks
‘∗’ and empty circles ‘◦’ denote equilibria where all eigenvalues
with positive real parts are real and complex conjugate, respectively.

an oscillatory behaviour with the resultant motion resembling
a spin owing to the significant turn rates.

6. Experimental results and generalizations

The ideas presented in this paper are being validated
experimentally. In this section, some results obtained
during open loop studies have been presented. Experiments
were performed on Plantraco’s Kolibri Pocket Plane (see
figures 16(a) and (b)). The aircraft has a wing span of 220 mm
and weighs approximately 5 g. The wing camber is negligible,
which means that Cmac ≈ 0. Therefore, increasing the dihedral
on the left wing relative to the right wing creates a positive
yawing moment and vice versa (ζ > 0 in (27)).

The aircraft wings were modified so that their dihedral
could be changed a priori. Ailerons were added as substitutes
for wing incidence, and the vertical tail was duly removed.
The aircraft was seen to possess a significantly large L/D

ratio. Ballast mass was added to the aircraft to rein in its
tendency to accelerate and pull up. Spoilers were added

(a) (b)

Figure 16. The Plantraco Kolibri Pocket Plane, used for experiments described in the paper. (a) The aircraft with wing dihedral set to zero.
(b) The aircraft with its wings raised to a dihedral of 55 deg.

on the inboard section of the wing to improve phugoid
damping. Experiments were performed with the elevator set
to δe = −10 deg. The aircraft position was measured directly
using VICON and the sampling frequency was set to 100 Hz.
The velocities and the heading angles were derived from the
position measurements using the finite difference method.
For each aircraft configuration, four flights were conducted
and the average values of the observed flight parameters are
reported here. For longitudinal studies, the angle of attack
was approximated as the difference between the body pitch
angle and the flight path angle. Even with the added mass
and spoilers, the phugoid motion did not damp out sufficiently
within the available experimental space for small values of
the wing dihedral. Therefore, the mean values of the flight
parameters, as the expected steady state values, were noted
down.

6.1. Symmetric configuration

The purpose of the experiments with a symmetric
configuration was to verify, qualitatively, the results in
figure 8. Figures 17(a)–(c) show the flight speed, angle
of attack and flight path angle as a function of the wing
dihedral. Flight tests at small values of the dihedral were
precarious, because of the tendency of the aircraft to depart
into a spiral. Nevertheless, the velocity and the flight path
angle trends (also shown by a quadratic fit) match those
predicted by the theoretical analysis in the preceding section.
The angle of attack increases almost linearly as the dihedral
angle is increased from 20 deg to 55 deg. The angle of
attack behaviour is seen to deviate substantially from the
linear trend for α < 20 deg due to the truant dynamics of
the aircraft. Consequently, no attempt was made to fit a low
order polynomial curve to the angle of attack data.

6.2. Lateral-directional motion

The turning performance of the aircraft was calculated for
different values of the aileron deflection. The aircraft,
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Figure 17. Steady state values of the longitudinal flight parameters as functions of the wing dihedral. (a) Flight speed as a function of the
dihedral. (b) Angle of attack as a function of the dihedral. (c) Flight path angle as a function of the wing dihedral.

Table 4. A summary of the turning performance. The aileron
deflection has been denoted by δa . The negative sign implies that the
aircraft rolls to the left.

δa (deg) δR (deg) δL (deg) V (m s−1) ω (deg s−1) β (deg)

−5 5 −5 3.6 104.6 4.6
10 −5 3.74 133.5 8.02
10 −10 3.8 154.7 13.2

−10 10 −10 3.5 160.4 −4.6
15 −10 3.5 160.4 11.46

however, was seen to be unstable, similar to that in the
experiments with a symmetric configuration. In fact, an
oscillatory spin-like motion was observed during a few
experiments. The results of the experiments have been
tabulated in table 4. The aileron deflection has been denoted
by δa .

The aircraft was seen to possess a very poorly damped
transient performance. Consequently, the values in table 4 are
approximate, in that they are obtained as the expected steady
state solutions. Beyond δa = −15 deg, the aircraft became
unstable ruling out any meaningful turning experiments in the
open loop. The data presented in table 4 is, nevertheless,
instructive in its own right.

For δa = −5 deg, note that the aircraft sideslip increases
as δR–δL is increased. The desired coordinated turn would
hence occur when δL is just less than 5 deg. The flight speed

is almost constant, which matches the expectations from the
earlier trim analysis. The aircraft turn rate increases as δR–δL

increase due of the consequent increase in the side force.
For δa = −10 rad, the sideslip is zero when δL =

−10 deg, and δR is between 10 and 15 deg. Note that the
turn rate and flight speed are almost constant. Therefore, a
part of the increased sideforce is lost in compensating for the
sideslip. It is interesting that even such sparse and crude, albeit
carefully chosen, data can be useful for predicting the optimal
dihedral combination for coordinated turns.

6.3. Generalizations and trade-offs

The results in the aforementioned sections can be readily
generalized to other similar aircraft. Although the numerical
results were presented only for an aircraft based on the Vapor,
it will be appreciated that they are based on a fundamental
underlying concept whose validity does not depend on the
aircraft to which it is applied. One could expect some
quantitative changes with aircraft geometry.

If the aircraft CG is located ahead of the wing AC, an
asymmetric dihedral or an asymmetric force distribution on
the wing would generate a yawing moment as explained in
section 5.1. From figure 5, it follows that the yawing moment
would be adverse in nature. At the same time, placing the CG
ahead of the wing AC would increase the moment arm of the
horizontal tail which would, in turn, improve the longitudinal
performance and stability. Consider an aircraft rolling to the
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right. In this case, a positive proverse yawing moment can
be obtained by deflecting the right wing upwards. Moreover,
an upward deflection of the right wing leads to a proverse
contribution from Cmac as well. However, deflecting the right
wing upwards would reduce the net side force. The reduction
in side force would be beneficial while performing a pure
roll, but it would be undesirable if the aircraft is rolling while
turning to the right.

Contrary to the last paragraph, consider the configuration
where the wing AC is ahead of the CG. This is the configuration
which has been analysed in detail in this paper. Recall (27):

ζ = Swlw

St lt
αw +

Swc

St lt

Cmac

CLα

. (34)

It is evident that a negative wing Cmac , which results from
a positive wing camber, has a detrimental effect on the
dihedral effectiveness ration ζ . One may be tempted to
consider minimizing the camber to improve ζ , as suggested in
section 5.1. However, note that αw depends on the wing
camber as well—it reduces with a reduction in camber. For a
wing with no camber, αw = α, the geometric angle of attack,
and Cmac = 0. Therefore, the camber value could be chosen
during design to maximize ζ .

The yawing moment that arises from an asymmetry in
the wing configuration or aerodynamic force distribution can
be traced to three sources. The primary source of yawing
moment is the side force, illustrated in figure 5. The second
source is Cmac , which was discussed in the last paragraph. The
third source, which has not been discussed so far, is drag. A
positive roll rate increases the angle of attack on the right
wing, and reduces that of the left wing. This leads to a
higher drag on the right wing which contributes a proverse
yawing moment. This stabilizing effect of drag is well known.
Interestingly, increasing the left wing dihedral enhances the
proverse yaw moment by further reducing the angle of attack,
and consequently the drag, on the left wing. This effect would
be enhanced at low Reynolds numbers, where the coefficient
of drag increases substantially due to viscous effects. When
the wing AC is behind the CG, the right-wing dihedral would
be increased to provide the necessary yawing moment, which
would detract from the proverse contribution of drag.

It is evident from the discussion that the choice of the
CG location involves a trade-off between the longitudinal
and lateral performance. Indeed, there are several merits in
placing the CG behind the wing aerodynamic centre, contrary
to regular fixed wing aircraft with a vertical tail where the
CG should be placed as far ahead as possible to improve the
longitudinal as well as lateral performance.

7. Conclusions

The ultimate goal of this work is to develop MAVs that can
mimic or exceed the agile manoeuvres of birds. This paper laid
the flight mechanic foundations for one such tailless aircraft
concept equipped with articulated wings. The results of this
paper, although valid in principle for all aircraft regardless of
their size, are particularly relevant to MAVs because their size
and speed make the articulated wing-based control scheme

practically realizable. Flapping wing aircraft can benefit from
the control scheme described in this paper because flapping
wing aircraft are equipped with the necessary actuators,
and no additional actuation mechanisms are required. In
this paper, the effect of wing dihedral on the performance
and stability of articulated wing aircraft was examined in
detail. Wing dihedral, together with the horizontal tail, can
be used to control the flight path angle (or the angle of
attack) and the flight speed independently for a range of flight
speeds. Asymmetric dihedral deflection was demonstrated as
an effective yaw control mechanism for agile MAVs. It was
shown that the aircraft sideslip can be regulated effectively
during rapid turns using the wing dihedral. Using the left- and
right-wing dihedral angles independently and simultaneously,
it is possible to achieve coordinated turns across a wide range
of turn rates while keeping the flight speed fixed. At the same
time, the control effectiveness of dihedral for yaw control was
shown to be highly sensitive to the angle of attack and the
angular rates which would make automatic control design a
challenging task, and increase the possibility of compounding
the inherent instability of the dynamics. The ideas presented
in this paper are being validated experimentally on a tailless
MAV. Some preliminary experimental results demonstrated
the qualitative validity of trim predictions from the numerical
analysis. The future work on the larger problem of developing
highly agile MAVs would focus on (a) the development
of aggressive control laws which incorporate asymmetric
dihedral actuation, and (b) incorporating the effects of wing
flexibility and honing them to improve the manoeuvrability.
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