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Abstract 
 
 Ice accretion affects the performance and control of 
an aircraft and in extreme situations can lead to incidents 
and accidents.  However, changes in performance and 
control are difficult to sense. As a result, the icing sensors 
currently in use sense primarily ice accretion, not the 
effect of the ice.  No processed aircraft performance 
degradation information is available to the pilot.  In this 
paper, the Smart Icing System research program is 
reviewed and progress towards its development reported.  
Such a system would sense ice accretion through 
traditional icing sensors and use modern system 
identification methods to estimate aircraft performance 
and control changes.  This information would be used to 
automatically operate ice protection systems, provide 
aircraft envelope protection and, if icing was severe, adapt 
the flight controls.  All of this would be properly 
communicated to and coordinated with the flight crew.  In 
addition to describing the basic concept, this paper 
reviews the research conducted to date in three critical 
areas; aerodynamics and flight mechanics, aircraft control 
and identification, and human factors.  In addition, the 
flight simulation development is reviewed, as well as the 
Twin Otter flight test program that is being conducted in 
cooperation with NASA Glenn Research Center. 
 
1.0 Introduction 
 
 Recent icing accidents, such as the American Eagle 
roll upset near Roselawn, Indiana in October 1994, and 
the Com Air accident in January 1997 clearly show that 

icing continues to be a serious safety concern.  The 
development of safer, more reliable, and affordable 
aircraft must include better solutions for flight in icing 
and severe weather conditions.   

Aircraft icing accidents are caused by the effect of ice 
accretion on the performance, stability and control of the 
aircraft.  Accidents occur when aircraft are not properly 
protected against ice accretion either on the ground or 
inflight.  This situation may result from an inadequate ice 
protection system, improper operation or failure to 
activate the system, or aircraft operation outside of the 
iced aircraft flight envelope. 

Currently little, if any, information about the state of 
the aircraft in terms of performance, stability and control 
in icing conditions is available to the pilot.  The ATR 72 
digital flight data recorder, DFDR, recorded 96 distinct 
parameters including aileron position, roll attitude, and 
many other parameters relevant to the Roselawn accident.  
While a careful analysis of these data during the post-
accident investigation was critical in determining the 
cause, none of this information was available in real time 
to help the flight crew prevent the accident.   

In most situations today, inflight aircraft icing is 
documented and evaluated based on the thickness of ice 
on the wing leading edge or on another surface (ice-
evidence probe or other protuberance) that can easily be 
examined visually by the flight crew.  The use of ice 
thickness is certainly convenient and there clearly is some 
relationship between ice thickness and aircraft 
performance and control.  Unfortunately this relationship 
is complicated by the effect of ice shape, ice shedding and 
residual/intercycle ice, varying accretion rates on different 
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components (which can change with icing conditions), 
IPS operations and irregularities, etc.  These factors 
complicate the ice thickness to aircraft performance 
relationship to the point that it is too complex to be a 
useful and reliable measure of changes in performance 
and control.  Therefore, while ice thickness and accretion 
rate measurements are still useful, they alone will not be 
sufficient to allow the development of a system to provide 
the pilot and automated systems with quantitative 
measurements of changes in aircraft performance and 
control in icing.  In fact, even if a complete 3-D mapping 
of the ice accretion was available, current CFD methods 
could not accurately predict the performance and control 
changes to the desired accuracy. 
 Therefore, the approach taken in this research was to 
directly measure the effect of ice on aircraft performance 
and control in real time and use this information to 
perform safety-related functions.  In this approach the 
entire aircraft is essentially an ice sensor, and these data 
are used to evaluate the effect of ice on the aircraft.  This 
paper describes the concept and the research completed 
and currently underway to develop a new and innovative 
human-centered automated system, a smart icing system, 
which has the potential to improve aviation safety in icing 
conditions.  Bragg et al.1 presented preliminary research 
and outlined the research program in 1998.  The purpose 
of this paper is to present a brief review of the concept 
and to summarize the current status and accomplishments 
since 1998.  An earlier version of this paper was 
presented at the AIAA Aerospace Sciences Meeting in 
January 2002.2 
 
2.0 Approach 
 

The Smart Icing System, SIS, is potentially a better 
way to manage the ice protection system and the 
operation of an aircraft in icing conditions where some 
degradation in performance and control can be 
anticipated.  This safety system or concept is not intended 
to replace, but rather augment well-established icing 
safety procedures such as ice avoidance and pilot 
response.1   

The Smart Icing System is visualized schematically 
in Fig. 1 and the four primary functions explained in the 
list that follows. 

  
 

Ice Management 
System 

(IMS) 
Envelope 
Protection 

Control Adaptation 
Primary IPS Operation 

  Pilot Input 
 Information 

Ice Accretion 
Sensors 

Ice Protection 
System 

(IPS) 

Pilot / 
Automation 

Aircraft 
Dynamics 

Ice 
Accretion   Advisory 

  Ice 
  Effects 

 
 

 

Fig. 1.  Schematic of the functions performed by the Ice 
Management System  
The aircraft is assumed to be equipped with a state-of-the-
art Ice Protection System, IPS, but now an additional 
level of safety is available through the Ice Management 
System, IMS, depicted in Fig. 1.  

 The IMS is the computational or software center that 
gathers data, evaluates the data, determines the 
appropriate response, and communicates this to the pilot 
and automation.   
 

The operation of the IMS can be summarized by the 
four functions: 
 
1. Sense the presence of ice accretion and characterize 

its effect on aircraft performance, stability and 
control.  Sense ice accretion and ice protection 
system performance. 

2. Automatically activate and manage the ice protection 
systems, and provide the pilot with feedback on the 
system status and behavior of both the aircraft and 
the IPS. 

3. If the performance degradation becomes significant, 
modify the aircraft flight envelope by use of the flight 
control system to avoid conditions where flight could 
potentially be uncontrollable.  Notify the pilot of this 
action and its implications for the flight envelope.   

4. Adapt the control system to maintain safe flight 
within the reduced flight envelope. 

 
The fundamental principle behind the IMS is that the 
important effect of ice on an aircraft is its influence on the 
performance, stability and control of the aircraft system.   
 To accomplish these objectives, the IMS receives 
inputs from the traditional ice sensors, the IPS system, 
flight crew, the aircraft flight dynamics and other aircraft 
state information.  The IMS controls the IPS much as a 
primary ice protection system does now; however, it has 
several other functions.  The IMS analyzes the available 
information to determine the effect of the ice accretion on 
the aircraft performance, stability and control.  All of this 
information is then used to provide flight envelope 
protection based on the actual, real-time ice accretion 
experienced by the aircraft.  This could include angle of 
attack protection through the stick shaker as is commonly 
done today; however, the angle of attack for stick shaker 
would be a variable determined by the IMS.  Other 
envelope protection features would be supplied through a 
digital flight control system.  These might include 
maximum g loads, bank angles, control deflections, flap 
deflections, pitch and roll rates, among others. 
 Control adaptation could be added as an additional 
level of safety.  Control adaptation, or reconfigurable 
controls, would modify the control laws to maintain 
acceptable flying qualities in the presence of the effects of 
the ice accretion.  This adaptation would be most useful in 
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emergency situations where, for some reason, the aircraft 
was allowed to accrete significant ice.  Reconfiguring the 
control laws provide the pilot/automation an acceptable 
level of handing qualities within a limited flight envelope.  
In severe icing this could be done until the icing 
conditions could be exited safely. 

The new icing safety system proposed has been 
summarized in terms of the operation of a new Ice 
Management System.  This approach assumes that 
regardless of the IPS, ice accretion can and will occur in 
some situations.  Safety will be achieved in an ice tolerant 
aircraft if the pilot/aircraft system can continue to 
maintain the desired flight path with an acceptable safety 
margin, regardless of atmospheric icing conditions. 

The research conducted to date has focused primarily 
on characterizing the effect of the ice on the aircraft in 
real time and examining the proper interaction of the 
system with the flight crew.  The characterization 
research has been conducted through simulation.  The 
effect of ice on the aircraft has been modeled and 
incorporated in six degree of freedom, 6 DoF, simulations 
where identification techniques have been developed.  
Neural networks have been explored as a means to take 
raw and processed sensor data to predict or characterize 
the icing effects on the aircraft performance and control.  
Human factors researchers are determining what 
information the flight crew need and when and in what 
format it can be most efficiently presented to them, which 
includes conducting research to develop cockpit displays 
of SIS-developed information.  In support of these 
activities a piloted flight simulation capability is being 
developed to act as a system integrator for the various SIS 
displays and systems.  The simulator will be used to 
develop, test, and demonstrate the technology.  Flight 
testing is also being used to help develop the 
characterization methods and test the concepts.  This 
research is briefly described below.  More detail can be 
found in the many reports published by SIS researchers 
and referenced throughout the paper. 

 
3.0 Current Research 

 
To conduct this research several assumptions have 

been made about the aircraft and systems that will be 
available to a fully equipped SIS aircraft of the future.  
These assumptions include: 
• Digital flight control system 
• Glass cockpit 
• All required sensors 
• All required onboard processing power 
 

It is anticipated that the SIS system when installed 
will be part of a larger onboard safety system.  The 
overall system will protect the aircraft against terrain, 
actuator and other system failure, damaging turbulence 

and wind shear, and performance and control degradation 
due to ice, frost, etc.  The costs of these systems, 
including the certification process, are of concern and will 
undoubtedly affect the initial implementation.  While this 
was recognized and addressed early in the research 
program,3 it will not be discussed in this paper.   

During this development period, Twin Otter 
dynamics have been used extensively because, as a result 
of NASA research programs, there exist excellent data on 
the aircraft with and without ice.  However, it is not the 
intent to develop an SIS system for the Twin Otter.  The 
simulations consider a modern aircraft with the attributes 
given above, but with the performance, stability and 
control parameters of the Twin Otter.  This is not to say 
that concepts and components of the SIS could not be 
retrofitted to less sophisticated aircraft such as the Twin 
Otter, but full implementation requires a modern, digital 
aircraft. 

In the following sections brief reviews of the research 
from the four groups: Aerodynamics and Flight 
Mechanics, Sensors and Controls, Human Factors, and 
Flight Simulation will be presented as well as the flight 
test research. 

 
3.1 Aerodynamics and Flight Mechanics 
 

In developing and simulating various SIS functions a 
6 DoF computational flight dynamics capability has been 
developed.  The model is based on the MATLAB 
Simulink software developed by Rauw called FDC.4  
Extensive modifications were made to include sensor 
noise, a nonlinear aerodynamics model capability, data 
filtering, hinge-moment modeling, improved gust 
modeling and atmospheric disturbance models.5,6  
Significant effort has gone into the clean and iced aircraft 
stability and control models.  The primary linear model 
was based on clean and iced aircraft flight data with a 
newly developed scaling method to generate icing effects 
models quickly for a wide range of icing conditions.   

These models were critical to the development of the 
IMS and the flight simulation capability.  Bragg et al.7,8 
presented initial results on flight mechanics modeling.  As 
part of the IMS development, these models were used for 
research on dynamic parameter estimation techniques that 
are an important part of the ice effects characterization 
function.  Initial results of this research were reported by 
Schuchard et al.9   

 
Ice effects model 
 The method was described in detail in previous 
papers5,7,8 and will only be reviewed here.  The icing 
effects model is based on the following equation 
 

)A(Ciceiced)A( C)k1(C
A

′+= η  

where 
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C kk
η
η=′  

In this equation, ηice is an icing severity parameter that 
represents the amount and severity of the icing encounter.  
η is an aircraft specific icing severity parameter and 

ACk represents the relative effect ice has on a particular 
stability and control parameter C(A).  Known Twin Otter 
data were used to establish values for 

ACk .  The term ηice 
was developed based on the ratio of the drag rise on a 
NACA 0012 airfoil at the current icing cloud conditions 
to the drag rise experienced at a reference condition in the 
continuous maximum icing envelope.  η is an aircraft 
specific ηice calculated based on the aircraft velocity and 
wing MAC.  The ηice equation is a correlation based on 
airfoil data taken in the NASA Icing Research Tunnel.  
This correlation is a function of the amount of ice 
accreting and the freezing fraction that reflects the type of 
ice shape.  Figure 2 shows η as a function of static 
temperature and LWC.  The maximum between 20° and 
30° corresponds to the glaze ice horns that accrete on 
airfoils just below freezing and result in large 
aerodynamic degradation.  As LWC increases the 
temperature at which the horns form decreases.  
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Fig. 2 Effect of static temperature on η for the Twin Otter 
at  V = 159 Kts, MVD = 20 µm,  t = 5 min. 
 

Using the FDC computational tool, the effect of ice 
accretion on aircraft performance was studied to evaluate 
the time to identify ice due to performance changes, the 
use of hinge moment as an ice detector, performance in 
maneuvers, and many other topics.5-8  The code was also 
used extensively to train the neural nets used to perform 
the icing characterization.10   
 
Results 

As an example, Fig. 3 compares the calculated 
degradation due to icing in a level standard rate holding 
turn (hold) to that in steady, level rectilinear flight.  Here 
the standard rate turn is intended to represent part of a 
holding pattern, but it could also be representative of 
maneuvering during climb out or landing approach.  In 

both cases, the flight is level and at constant power.  Here 
the initial velocity has been matched at 230 ft/s and the 
altitude is 6560 ft.  All of the other parameters for the 
Twin Otter are the same including η varying from 0 to 
0.10 from 0 to 300 sec.  The figure shows that the 
predicted velocity and angle of attack are more affected 
during the hold that cruise flight.  This is due to the 
increased lift required in the hold and as a result larger 
power, angle of attack, and elevator deflection.  For 
example the angle of attack after 300 seconds increases 
1.2 deg for the cruise case and 1.6 deg for the hold.   
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Fig. 3  Aircraft performance clean and iced (η = 0. to 
0.10) in a holding turn and cruise. Initial V = 230 ft/s and 
h = 6560 ft.  
 

The iced flight modeling capability developed 
through the FDC code was also used to explore the effect 
of atmospheric disturbances and ice on an aircraft.  The 
concern was that the characterization methods being 
developed might incorrectly identify as an icing encounter 
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some atmospheric disturbances that affect aircraft 
performance and control.  Merret6 examined this issue in 
detail in his MS thesis where the effect of wind shear 
(microburst) and gravity waves were studied.  Figure 4 
shows the predicted response of the aircraft to two 
microbursts of different intensities and several different 
icing encounter intensities.  In each case the aircraft is 
being simulated in an altitude-hold autopilot mode.  
Shown are the airspeed and angle of attack, however, 
elevator deflection behaves very similarly.  The 
microburst has a very large and rapid effect on the aircraft 
with the rates of change of the velocity and angle of 
attack much larger than the initial icing effects.  Not 
shown are the results that the autopilot could not hold 
altitude in the microburst, but was able to hold altitude for 
even the most severe icing encounter simulated.   
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Fig. 4  Comparison of the effect of microbursts and icing 
on aircraft parameters. 
 

Simulation of the effect of gravity waves was not as 
straightforward.  Gravity waves are not as well known or 
as well defined as microbursts and were modeled as 
simple sinusoidal oscillations of the vertical velocity.6  
For gravity waves of large wavelength, 8 -24 kilometers, 
the loss in aircraft performance due to the downdraft can 
resemble icing performance loss.  However, control 
response differences may contribute to proper 
identification.  More research on this will be needed 
before a characterization algorithm is completed. 
 
Future research 

Research is focusing on developing an envelope 
protection procedure based on the available or expected 
icing characterization information.11  This research 
includes the development of better nonlinear aerodynamic 
models to include stall and limited post-stall behavior.  
The current formulation is based on the concept that 
certain parameters, such as angle of attack, must be 
limited and that these limit values are strong functions of 
the current icing state that will be evaluated in situ during 
the flight.  The concept includes determining in real time 
what control inputs will exceed these limits and notifying 
the pilot (or the automation) of these  boundaries through 
hard or soft limits.   
 
Flight testing 
 
 A joint University of Illinois - NASA Glenn flight 
test program has been conducted as part of the Smart 
Icing System program.  The objective of this test was to 
develop and evaluate the identification and 
characterization methods used in the smart icing system 
using flight data from clear air and in natural icing 
conditions.12 
 The first phase of the flight test was conducted in 
February and March 2001 using the NASA Twin Otter 
research aircraft to provide flight test data.  A linear 
regression fit of the flight data to acquire stability and 
control derivatives showed many promising results.  
Significant changes in the aircraft trim values and stability 
and control derivates were observed due to ice accretion.  
The longitudinal derivatives were very sensitive to ice 
accretion and showed promise as a means to characterize 
the ice accretion effects.  Figure 5 shows the CLα and CMα 
obtained from the linear regression analysis of flight 
010302f1.  Only a very brief analysis of this glaze icing 
flight is presented here.  A complete analysis is available 
in ref. 12. 
 This flight was in glaze icing conditions with the 
LWC approximately 0.3g/m3, the droplet MVD of 10 µm, 
and the temperature –5 °C.  In Fig. 5a CLα is shown 
versus time with the operation of the ice protection 
system indicated.  The symbols indicate times when 
control doublets were performed and the resulting 
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response was used to calculate the derivatives.  CLα is 
seen to decrease when ice is accreted and is 
approximately restored to the clean value when the ice 
protection system is used to clean the aircraft.  Figure 5b 
shows similar results for CMα except here the ice causes 
the value of CMα to increase indicating that the aircraft 
was less stable.  Corresponding changes in other 
derivatives and a significant drag rise was also deduced 
from these experiments.  More careful analysis of the 

magnitude of the decrease measured in CLα , for example 
a value of 0.0742 /deg at 13.55, shows larger than 
expected effects.  These large changes correlate with 
measurable levels of atmospheric turbulence and are 
thought to be the effect of poor fit of the step-wise 
regression due to unmodeled turbulence effects. Overall 
the results of the flight test are promising and show that 
the effect of ice on the aircraft performance and control 
can be detected in flight.  
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Fig. 5. - Stability and Control derivative variation with time for Flight 010302f1 

 (Includes uncertainty due to atmospheric turbulence effects) 
 
 
 Flight tests conducted during the winter of 2002 and 
continuing development of the characterization methods 
are examining the turbulence issue and other areas to 
improve the methods.  Data reduction is continuing to 
better understand the changes in identified parameters 
with ice accretion and the changes due to IPS operation.  
Future analysis will include using the data to aid in the 
development of the real-time algorithms to be used 
onboard an SIS-equipped aircraft.  Neural nets will be 
developed and tested using these data to tests and 
develop IMS models. 
 
3.2 Sensors and Control 

 
Icing Characterization Overview 
In Schuchard et al.,9 a neural network that characterizes 
degradation of the aircraft flight dynamics based upon 
sensor data and parameter estimates was advocated for 
the core of the IMS.  Neural networks are used because 
of their ability to extract information simultaneously 
from multiple data sources that depend on the desired 
information in a complex manner.  It is already known13 
that a feed-forward neural network with at least one 
hidden layer is able to approximate any continuous 
function to an arbitrary level of accuracy on any bounded 
set given ideal training.  Neural networks also have 
inherent parallel properties that provide a robust and 
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fault-tolerant structure.  Networks are practical for 
aircraft applications because, following initial training, 
they process information very rapidly.   

The ultimate goal of the neural-network-based 
characterization is to provide not only a characterization 
of icing severity and location, but also to provide 
envelope protection information, IPS operation 
commands or cues, and perhaps even handling event 
recovery commands or cues.  In proceeding toward this 
ultimate goal, Schuchard et al.9 began by applying neural 
networks to icing detection and classification during a 
normal operational maneuver modeled as an elevator 
doublet.  In this limited scenario, neural networks were 
found to provide an accurate icing indication along with 
a less accurate, but still sufficient, classification of the 
icing severity.  This study incorporated parameter 
identification of dimensional stability and control 
derivatives of longitudinal flight dynamics as the basis 
for characterizing the degradation of the flight dynamics 
due to icing, as captured by the icing severity factor η of 
Bragg et al.7  Several parameter identification techniques 
were evaluated in the context of icing  characterization in 
Melody et al.,14 and of those algorithms considered, 
recursive H∞ parameter identification technique was 
found to be most effective.   

This initial neural network was generalized in 
Melody et al.10 to include the sensor fusion function of 
the IMS by incorporating, in simulation, information not 
taken advantage of in the previous work.9  Whereas 
environmental and ice probe measurements primarily 
provide information on the rate of ice accretion, 
increased hinge moments and steady-state effects 
provide information on icing degradation.7  Steady-state 
effects, as used here, are changes in trim conditions 
consistent with increased drag and decreased lift, 
characteristic of icing events during flight conditions 
with minimal aircraft accelerations (e.g., steady, level 
flight).  While future efforts will be made to incorporate 
traditional atmospheric and ice probe measurements, the 
focus here is to demonstrate the feasibility of the more 
novel aspects of the IMS approach. 

Therefore, here the steady-state characterization and 
hinge moment sensing along with the parameter 
estimates are incorporated into the icing characterization.  
Furthermore, the extended characterization neural 
network of Melody et al.15 was applied to steady-level 
flight conditions, where the absence of excitation due to 
pilot input (e.g. elevator doublets) limits the 
effectiveness of parameter identification.  One of the 
benefits of the recursive H∞ parameter identification, 
demonstrated in Melody et al.,15 is that it can provide 
accurate parameter estimates even in the absence of pilot 
input so long as excitation is provided by turbulence, 
albeit at slower convergence rates.  As with the initial 
neural network of Schuchard et al.,9 this extended neural 

network uses η as a measure of the degradation of flight 
dynamics, and it incorporates parameter identification of 
the dimensional derivatives of the longitudinal flight 
dynamics. 

In this most recent work, the neural network 
characterization has been further generalized to include 
parameter identification of nondimensional derivatives of 
the full flight dynamics (i.e., longitudinal motion and 
lateral-directional motion).  The parameter ID algorithm 
was modified to provide nondimensional derivatives so 
that the ID algorithm could be decoupled from trim 
estimation.  Furthermore, consideration of lateral-
directional motion along with the longitudinal motion 
was included so that the IMS may ultimately distinguish 
between longitudinal icing affects, e.g., tailplane stall, 
and lateral-directional icing affects, e.g., roll upset. 
 
Neural network approach 

As with the previous neural network results, we take 
the icing severity factor η as a measure of the 
degradation of the flight dynamics due to ice accretion.  
However, here we normalize η by the nominal icing 
condition that corresponds to the NASA Tailplane Icing 
Program simulated icing condition to produce η .16 (In 
Bragg, et al.,7 this nominal icing condition corresponds 
to a value of η = 0.0675.)  At present, the icing severity 
factor is the best measure of icing degradation available, 
and hence we adopt it.  As in Melody et al.,10 we address 
icing encounters during periods of steady, level flight 
wherein the icing severity increases linearly over time 
from an initial clean condition. 

A block diagram of the neural network is depicted in 
Fig. 5.  In the upper left corner of the figure, the flight 
dynamics are subject to the unknown turbulence and 
measurement noise input.  As discussed in Melody, et 
al.,14,15 these unknown exogenous signals fundamentally 
limit the accuracy of the parameter estimates, and hence 
must be included in any realistic simulation.   

 
 
Fig. 5  Neural network block diagram.  
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From the flight dynamics we have measurements of the 
wing and tail hinge moments along with corresponding 
root-mean-square hinge moment measurements.  The 
hinge-moment model is described in Pokhariyal, et al.17 
From the flight dynamics, we also have measurements of 
total velocity V, angle of attack α, sideslip angle β, roll, 
pitch, and yaw rates (p,q,r), roll, pitch, and yaw angles 
(φ,θ,ψ), control signals for the elevator, rudder, and 
aileron, δE, δR, and δA, and engine power P.  From these 
measurements we estimate the flight dynamics trim 
velocity V , trim angle of attack α , and trim elevator 
angle Eδ  by lowpass filtering the corresponding 
measured signals at 1/30 Hz.  The trim conditions are 
also used to calculate the expected clean stability and 
control derivatives against which the estimated stability 
and control derivatives from the parameter identification 
algorithm must be compared in order to ascertain icing 
degradation.  Furthermore, expected clean-aircraft trim 
values must be calculated to provide a reference for 
interpreting the estimated trim values.  Since the 
dynamic identification algorithm is expected to perform 
better under larger excitation and the steady-state 
characterization is expected to have better accuracy 
under smaller excitation, measures of excitation were 
calculated in order to aid the neural network in 
discriminating between dynamic parameter ID and 
steady-state characterization.  As excitation measures we 
use an estimate of the dynamic portion of the power of 
the measured signals, denoted as αP̂ , VP̂ , qP̂ , and 

E
Pδ̂ .  

The excitation measures and all other input to the 
neural network are lowpass filtered by batch averaging 
each signal over the past 5 sec in order to reduce the 
effect of measurement noise.  Finally, the neural network 
provides an estimate of the icing severity η̂  at any given 
time instant t based only on the lowpass filtered input at 
that time t.   

In order to be useful, the neural network must 
provide accurate icing characterizations over a broad 
range of trim conditions and turbulence intensity.  
Furthermore, the icing characterization network must 
accurately identify clean aircraft in order to avoid false 
alarms.  The neural networks are applied in 600-sec 
simulations modeling a rich set of steady, level flight 
scenarios.  Each simulation was run under the 
assumption of constant engine power, level flight, with 
ice accretion on both the wing and the tailplane, and at 
an altitude of 2,300 m.  Simulations were performed with 
the aid of the FDC Matlab/Simulink toolbox as described 
in Bragg, et al.7  Furthermore, measurement noise 
consistent with Twin Otter instrument accuracy 
specifications, were incorporated as zero-mean, 
bandlimited white Gaussian noise.  The simulations 
provided all measurement information at a 30-Hz sample 
rate. 

As in Schuchard, et al.,9 we use a sigmoidal back-
propagation neural network structure.  Once the structure 
of a neural network is determined, the biases and weights 
of the nodes and connections, respectively, are 
determined via numerical optimization with respect to 
the least squares error between the known output and the 
network output from a suite of training data.  In this case, 
the IMS network used three hidden layers of seven 
nodes, twelve nodes, and five nodes, respectively.  Of the 
data available from the simulation cases described above, 
training data were obtained by sampling the 
measurements at 41-sec intervals from each of the cases.  
The network was trained using supervised learning with 
a back-propagation algorithm.   
 
Network simulation results 

Once the network was trained with the reduced data 
set, they were applied successively to each of the 230 
simulation cases.  The general accuracy of the neural 
network over the entire suite of simulation cases is 
measured by the root-mean-square η  estimate error.  
The error distribution was estimated for each network 
over all simulation sample instants (i.e., 0 - 600 s at 30 
Hz).  

Although the icing severity estimate for the IMS 
neural network can have significant error at a given 
sample instant, Fig. 6 clearly indicates that these 
significant errors are rare in the set of all simulation 
sample instants.  In fact, detailed study of all simulation 
cases for the IMS network, which are not included here 
for the sake of brevity, reveal that the cases appear 
almost perfect on visual inspection.  The IMS network 
has a mean error of 7.2x10-6, an error standard deviation 
of 9.8x10-5, and an error of greater than 0.01 (i.e., 1% of 
the difference between a clean aircraft and a nominally 
iced aircraft) for only 0.31% of simulation time instants. 
 

 
 
 

Fig. 6  Scatter plots of IMS neural network estimated η  
versus actual (instantaneous) η  over all simulation runs.  
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A perfect neural network would have all points lying on 
the depicted line of slope one. 

 
Further analysis of these simulation results has 

demonstrated that the excellent performance of the IMS 
is primarily due to the accuracy of the hinge moment 
model, an accuracy that may not be available in practice.  
For this reason, a second IMS neural network was 
considered that excluded the hinge moment 
measurements altogether, in both the training and the 
simulation stages.  This limited IMS network was 
simulated over the same set of scenarios as the full IMS 
network discussed above.  The scatter plot corresponding 
to Fig. 6 for the case without hinge moment input, is 
depicted in Fig. 7.  While the results for the limited IMS 
network are clearly degraded from those of the full IMS 
network, the results exhibit relatively large errors only 
very rarely, with an error of greater than 0.1 (i.e., 10% of 
the difference between a clean aircraft and a nominally 
iced aircraft) for only 0.1% of simulation time instants. 
 

 
Fig. 7:  Scatter plots of limited IMS neural network 
estimated η  versus actual (instantaneous) η  over all 
simulation runs.  A perfect neural network would have 
all points lying on the depicted line of slope one. 
 
Autopilot analysis 

Many aircraft accidents and incidents have occurred 
due in part to the use of the autopilot that masks the 
effect of the ice on aircraft control from the pilots.  Since 
the SIS is intended to communicate the effect of ice on 
aircraft control to the pilots, the autopilot would be used 
in icing.  As a result a study is underway to examine the 
autopilot stability and performance under iced 
conditions. (This study is described in detail in Vikrant 
and Voulgaris.18) The autopilot analysis was done using 
the Flight Dynamics and Control (FDC) toolbox for 
MATLAB & Simulink with a pitch-attitude-hold 
autopilot structure. The behavior of various autopilot 
modes like the Pitch-Attitude-Hold (PAH), Altitude-

Hold (ALH), Roll-Attitude-Hold (RAH) etc. was 
investigated through simulations. 

It was seen that severely iced conditions could lead 
to aircraft stall and elevator saturation if the altitude-hold 
autopilot was engaged, especially at low flight velocities. 
The altitude in some cases could not be held just with the 
elevator and the ALH autopilot must also be able to use 
aircraft power to hold the altitude.  Icing was also seen to 
cause severe degradation in the autopilot tracking 
response. Moreover, under iced conditions and in the 
control of the ALH autopilot it was found to be 
dangerous to issue a roll command because it could lead 
to the saturation of the elevator.  Overall, it was noted 
that there was a need to adapt the current A/P structure to 
make it perform robustly to the icing conditions. 
 The effect of icing on the autopilot was examined 
from a theoretical point of view using quadratic stability 
analysis of the linearized Pitch-Attitude-Hold mode.  The 
fact that the linearized PAH model was affinely 
dependent on the icing parameter, η, made the stability 
conditions reduce down to the feasibility of finite linear 
matrix inequalities. It was noted that the stability of the 
PAH did drop, but not very significantly, with increasing 
icing parameter value. 

Currently work obtaining limits under icing 
conditions on the reference values issued to the autopilot 
is underway.  This is being done by examining the peak-
to-peak nominal performance of the PAH autopilot.  
Preliminary results have already been obtained and 
further investigation and analysis is being carried out.  
 
3.3 Human Factors Research 
 

The role of Human Factors Group in this project is 
to present the IMS-generated icing-related information to 
pilots in a meaningful and effective manner in order to 
support them in making decisions and 
selecting/executing actions under time pressure and 
uncertainty. The following sections will describe the 
conceptual design of the IMS interface and the CSE 
research activities that were conducted to date as part of 
the overall Smart Icing Systems project.  
 
Identification of Pilots’ (Perceived) 
Information Requirements  

The first step in any interface design is the 
identification of the information requirements of future 
users and the examination of the constraints under which 
these users must operate. To this end, a survey of 
regional carrier pilots was conducted. The survey served 
several purposes: a) identify pilots’ perceived 
information requirements during actual or suspected in-
flight icing encounters, b) learn about pilots’ operational 
experience with, and their understanding of, icing 
conditions, and c) explore pilots’ attitude towards highly 
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autonomous control automation. With the assistance of 
the Airline Pilots’ Association (ALPA), 6407 surveys 
were sent out to nine regional carriers.  

In the context of this paper, it is possible only to 
present some of the main findings from the analysis of 
pilots’ responses (n=386). First, we identified a number 
of gaps and misconceptions in pilots’ knowledge and 
understanding of in-flight icing conditions. Information 
about gaps and misconceptions in pilots’ understanding 
of in-flight icing can serve as important input for 
improvements of pilot training.  

The vast majority of pilots in this survey (93%) 
indicated that visual checks for ice accretion are their 
primary means of ice detection and diagnosis. This 
reliance on visual cues is problematic because not all 
aircraft surfaces are visible to the pilot (e.g., the tail-
plane of the aircraft) at all times (e.g., at night). Also, 
this approach requires that the pilot already has reason to 
suspect icing, which then triggers visual inspection of the 
aircraft. In the absence of such expectations, pilots may 
be surprised and experience difficulties as suggested by 
their descriptions of the worst icing encounters, which 
are  
characterized by a sudden onset and a rapid deterioration 
of aircraft performance. Visual icing cues can also 
mislead the pilot who needs to interpret them in light of 
the current flight context. A relatively small number of 
pilots mentioned that additional cues that alert them to 
possible icing include a loss of airspeed, the need for 
additional power to maintain airspeed and altitude, and 
unusual trim adjustments by the autopilot.   

Overall, the survey results confirm the need for 
providing pilots with more effective and timely 
information as well as decision support in the context of 
icing conditions (for a detailed report on the survey 
results, see McGuirl et al.19). The following sections will 
describe our approach to achieving this goal and the 
various research activities that were conducted as part of 
this project. 

A Decision Support System  
As mentioned earlier, our goal is to support pilots in 

decision-making and action selection/execution under 
uncertainty.  Figure 8 shows the various steps involved 
in the decision-making process and possible IMS 
functions that can serve to support the pilot during each 
phase. 
Fig. 8  IMS support functions. 
 

The above support functions are implemented in the 
current IMS interface as shown in Fig. 9. The various 
functions and implementations will be discussed in more 
detail in the following sections. It is important to note 
that our main focus in this project is the conceptual 
design of the IMS interface rather than its specific 
implementation for a particular aircraft cockpit.   

First, pilots need to be notified of the onset of, and 
significant changes in, icing conditions. In some cases, 
they may anticipate and look for visual signs of ice 
accretion. In other circumstances, however, their 
attention needs to be captured in a data-driven manner. 
This approach allows us to inform pilots about icing 
events as soon as possible, even before visual signs or 
performance decrements may be noticeable to the pilot.  
One way to achieve data-driven attention capture is the 
use of abrupt visual onsets. In particular, recent research 
by Nikolic and Sarter20 has shown that, in visually 
demanding highly dynamic environments such as the 
flight deck, it is most effective to use a visual alerting 
mechanism that extends horizontally across the pilot’s 
forward field of view.  In the IMS interface, a so-called 
“ambient strip” (see Fig. 9) fulfills this function. By 
extending the strip and drawing it around the affected 
system/parameter, we can go beyond alerting pilots to 
the fact that something has happened and also guide their 
attention to the specific problem.   
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Fig. 9  Conceptual design of the IMS interface  
 
 

Another way to support attention capture and 
guidance is to introduce multi-modal feedback. The 
rationale behind this approach is that, on most flight 
decks, pilots’ visual attention is already highly taxed. 
Adding yet more visual information for the purpose of 
alerting pilots to the onset of icing condition and for 
indicating the nature and severity of the ice accretion is 
likely to overload pilots’ visual attentional capacity. 
Instead, by distributing information across sensory 
channels (e.g., by providing both visual, auditory, and 
tactile feedback), it is possible to support time-sharing of 
tasks and parallel processing of information.21,22  In 
particular, a simulator study was conducted to test the 
effectiveness of vibrotactile cues for presenting pilots 
with information on the onset, location, and severity of 
icing.  Using twenty-four pilots assigned to one of three 
experimental groups, possible cross-modal interference 
between this type of feedback and existing visual and 
auditory signals on the flight deck was examined. These 
results (for a more detailed report see McGuirl and 
Sarter19) suggest that the introduction of tactile cues, and 
thus the distribution of information across sensory 
channels, represents a promising approach to providing 
pilots with icing-related information.  
Diagnosis and action selection  

Once the pilot has noticed the presence of icing, 
he/she needs to diagnose its nature and select an 
appropriate response. Factors such as time pressure, few 
and ambiguous cues, or limited experience with certain 

icing conditions can make it difficult for pilots to perform 
these tasks successfully. Therefore, some form of decision 
support should be provided. One possible approach is to 
provide a status display that presents information about 
the icing situation but leaves the selection of the proper 
response to the crew.23  Another possibility is to introduce 
a command display that recommends appropriate actions 
and thus saves the crew the cognitive step from diagnosis 
to action selection. Both status and command displays 
involve benefits and disadvantages that need to be 
weighed carefully against one another. One of the biggest 
concerns with status and command displays, and with 
decision aids in general, is their potential for creating 
automation biases. Operators may show signs of 
excessive trust in, and reliance on, an automated decision 
support system. Experience with a system, or a negative 
attitude towards modern technologies, can lead to the 
opposite, but equally undesirable, effect: pilots may not 
use the system-provided information or follow its 
recommendations when they should do so.24-27  

We conducted a simulator study to examine the 
effectiveness and limitations of both forms of decision 
support in more detail in the context of icing. 27 
commercial pilots were randomly assigned to one of three 
display conditions (baseline, status, and command).  They 
were flying a total of 20 ILS approaches on a motion-
based GAT 2 simulator that recreated the appropriate 
kinesthetic symptoms associated with an actual encounter 
of icing conditions (e.g., airframe or control buffet). They 
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experienced eight wing ice scenarios, eight tail-plane ice 
scenarios, and four scenarios without any ice accretion.  
Pilots in the status and command conditions, but not those 
in the baseline condition, received information about the 
icing location or the appropriate response to the icing 
event, respectively. The overall reliability of the 
information was 70%.  

Display condition and accuracy of the decision aid 
turned out to be the most influential, and often interacting, 
factors in this study.  As expected, both status and 
command displays led to improved performance over the 
baseline condition when accurate information was 
presented. However, inaccurate information led to pilots’ 
performance dropping below that of the of the baseline 
condition in both cases (see for example Fig. 10).   
 
Fig. 10  Stall frequency as a function of  accuracy 

 
Overall, the findings from this study (for a more 

detailed report see Sarter and Schroeder28) suggest the 
need for a context-sensitive choice between different 
forms of decision aids. Command displays may be 
preferable when pilots need to respond to an urgent 
problem (such as a stall) immediately, even at the risk of 
taking the wrong action in some cases. However, if the 
consequences of a wrong action are very severe, or if the 
circumstances allow the pilot more time for making a 
decision, a status display may be more effective as it leads 
to fewer errors in case of inaccurate information.  
 
 
Future research  

Our future research activities will focus on three 
areas: a) supporting trust calibration to avoid that pilots 
over rely on the decision support provided by the IMS, b) 
support long-term monitoring of icing conditions, and 
thus decision-making, by developing a trend display of 
icing severity, and c) refining the design of indications 
related to the envelope protection and control adaptation 
functions of the IMS.  
 
3.4 Flight Simulation 
 
Icing Encounter Flight Simulator 

A key objective of the simulation effort is to combine 
the unique core technology elements of this SIS research 
into a piloted real-time flight simulator to provide a 
demonstration of the overall system and its components.  

In the process, systems engineering of the Icing 
Encounter Flight Simulator (IEFS) is being employed to 
update, integrate, test, validate and improve the 
functionality of the IMS and supporting individual 
elements.  Specifically, one activity is to coordinate the 
development with the Human Factors group to provide 
simulator updates embodying their cockpit-display 
concepts for use in pilot experiments.  Additional activity 
will involve using the simulator as a tool for engineering 
analysis to test the robustness and sensitivity of the 
overall SIS for particular flight scenarios being planned 
for demonstration.  Feedback from all of these 
experiences will be used to improve the SIS. 

A long list of general features of the IEFS includes: 
operation of SIS ID algorithms and neural nets, support 
for glass cockpit displays designed by the human factors 
group, flight in and out of icing conditions during day and 
night using the specialized iced aircraft models, realistic 
out-the-windows terrain and external aircraft views, flight 
in VFR and  IMC conditions, real-time and batch-mode 
operation, flight-data-recording features and real-time 
playback, flight with and without autopilot operation, and 
finally flight with and without the aid of the SIS.  All of 
these features are complete or under ongoing 
development. 

In approaching the initial development of the IEFS, 
several factors were considered.  First, given the level of 
complexity and limited time frame for this research, the 
creation of a new piloted real-time simulation code would 
not be feasible or economical, especially in light of the 
many simulation codes already in existence,29 albeit most 
of them proprietary.  Second, the envisioned simulation 
would ultimately involve several processor-intensive 
modules, among them the flight dynamics/aircraft model, 
out-the-window views, a glass cockpit display, and neural 
net icing characterization and associated IMS functions.  
Third, inexpensive PCs made them particularly attractive 
host computer systems, especially with the advantages of 
Linux-based operating systems.  As a result of these 
considerations, the IEFS has evolved to include chiefly a 
modified open-source flight simulator running as part of a 
component-based simulation with other modules in a 
networked environment using PC-client computers.  
These elements are discussed in greater detail. 

The current IEFS main simulation module is based 
on the open-source Flight Gear Flight Simulator (FGFS) 
led by Curtis Olson of the Human Factors Research Lab 
at the University of Minnesota.30  Over 50 developers 
from all over the world have contributed to its 
development.  It is programmed using C/C++ and 
OpenGL, having more than 150,000 lines of code.  Flight 
Gear adheres to the GNU General Public License (GPL), 
which gives permission for anybody to modify and 
redistribute the code without changing the copyright 
notice.  The simulator is multi-platform and hence can be 
run on a range of computer systems including Windows 
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NT, Windows 95/95/2000, Linux, BSD UNIX, SGI IRIX, 
SunOS and Macintosh.  The pilot can run the simulator by 
providing input through the keyboard, the mouse or 
through a combination of a joystick, throttle and rudder 
pedals. 

 
Fig. 11  Flight Gear code organization and location the 
UIUC aircraft-model addition to LaRCsim.  
 

Of the various flight dynamics models implemented 
in FGFS, the current study uses the NASA Langley 
LaRCsim.31  It implements the six degree of freedom 
rigid-body equations of motion solved using quaternions 
and requires user supplied routines for the aircraft model.  
In its original form, there are three aircraft models hard 
coded into FGFS. 

To model the Twin Otter, a reconfigurable aircraft 
model was added to FGFS.  This adapted code has been 
called UIUC-FGFS.  The modifications are readily 
accomplished as the basic core FGFS code is extremely 
modular and takes advantage of the C/C++ programming 
language.  Moreover, newer versions of FGFS available 
on the web include the most recent publicly available 
UIUC modifications.  Figure 11 shows the organization of 
the FGFS with the flight dynamics model (FDM) 
supported by the LaRCsim, which calls the UIUC aircraft 
model as shown.  A keyword-based input file is used by 
the UIUC code to define all of the aircraft clean and iced 
parameters.32   

FGFS includes scenery from all over the world for 
realistic out-the-window terrain views in addition to a 
HUD and instrument panel display.  Owing to the input 
from several developers, the scenery views are being 
continually refined.  For example, Fig. 12 shows a screen 
grab of the Twin Otter in flight above the San Jose 
International Airport based on aerial/satellite imagery.  

Additional views can be found on the Flight Gear 
website.30 
 

 
Fig. 12   Screen grab of the Twin Otter in flight over the 
San Jose International Airport (KSJC). 
 

The IMS neural network native code is Matlab.  In 
the current version of the UIUC-FGFS, this Matlab code 
was converted to C++ using a set of Matlab 6.0 APIs 
(Application Programming Interface).  In future versions 
of the simulator, the computationally intensive IMS 
neural network will be run on a separate computer over 
the network. 

As previously described, the Human Factors Group 
has developed a series of preliminary versions of the glass 
cockpit with IMS interfaces designed to help the pilots fly 
safely in icing conditions (see Fig. 12).  These glass 
cockpits have been implemented using OpenGL graphics 
running as a separate process on another computer over 
the network.  In particular, the current network version of 
the IEFS only includes the UIUC-FGFS and glass 
cockpit.  UIUC-FGFS is used to transfer data to a socket 
on the client computer running the glass cockpit.  The 
glass cockpit code then reads the sockets and updates the 
display. 

Specifics regarding the system requirements and 
development environment are as follows.  The platforms 
used for development at UIUC are Redhat Linux 7.1 and 
Windows NT 4.0 PC machines running at 1.5 GHz with 
3D accelerator graphics cards (GeForce 2 Ultra) with full 
OpenGL drivers to achieve smooth frame rates of 
nominally 30 Hz and higher.  GNU utilities and others are 
used for development on both the Linux and Windows 
NT systems.  Specifically, the GNU gcc compiler is used 
together with several libraries including Mesa/OpenGL, 
Perl, Automake, Autoconf, Make, Plib, and the C++ 
libraries provided by Matlab 6.0.  To synchronize the 
development of UIUC-FGFS and to allow access to 
multiple developers, CVS (a version control system 
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software) was used on a computer running Redhat Linux 
7.1. 
 
Icing scenarios 

Two fictional icing encounters are being developed to 
demonstrate the IMS capabilities and benefits.  The first 
involves airframe ice leading to tailplane stall of a generic 
turboprop commuter aircraft.  A map view of the flight is 
shown in Fig. 13.  In this fictional account, a myriad of 
conceivable factors put the pilots in the following 
situation on approach: (a) flight in an aircraft with a 
history of tailplane stalls related to airframe icing (b) 
erratic winds at destination, leading to a runway change 
and an unfamiliar, over-mountain approach (c) use of 45-
deg flaps during approach phase, due to steep approach 
(d) high gross landing weight and forward CG due to full 
passenger and cargo load, placing aircraft near edge of 
certified flight envelope (e) low airspeed on final 
approach, due to spacing requirements for departing 
traffic (f) a distracting element, hydraulic pump failure.  
Tailplane stall occurs in this scenario. 
 
 
Fig. 13 Fictional flight plan and modified approach of a 

commuter aircraft flying in icing conditions that led to 
tailplane stall. 

In this scenario, leading factors contributing to the 
failure can be categorized according to the three layers of 
defense: avoidance, the ice protection system, and then 
the pilots. With respect to avoidance, the descent occurred 
in icing conditions.  PIREPs did not indicate significant 
icing over the destination.  There was a tail de-ice boot 
failure, and tail ice severity was not indicated by the nose-
mounted ice-evidence probe.  Ice detection procedures for 
this case were not adequately defined in the flight manual.  
Finally, the pilots were busy with last-minute approach 
changes, new charts, checklists, and hydraulic pump 
failure; hence, ice management was not the highest 
priority. 

The future demonstration of the simulator will 
include the above scenario as well as one with the extra 
layer of protection provided by an onboard IMS.  With 
the IMS, there are two possible interventions.  First, icing 
effects characterization would alert pilots to tail icing 

severity and IPS failure during approach, overcoming the 
inadequate IPS and allowing for timely corrective action.  
Second, the envelope protection features would prevent 
pilots from placing aircraft in a steep descent 
configuration, eliminating high tail down-force and 
resulting tailplane stall.  Both interventions would have 
prevented a crash.  A roll-upset scenario is also under 
development for the simulator and SIS development. 
 
Future Research 

Work continues to implement the SIS components in 
the Icing Encounter Flight Simulator to be demonstrated 
through the icing scenarios under development.  This 
includes integrating the non-linear Twin Otter model, 
refining and updating the IEFS glass cockpit and IMS 
functions, implementing new characterization methods 
and envelope protection, and adding features for the 
demonstration scenarios and human-factors pilot 
experiments.   

In addition development of the networking aspects of 
the IEFS to improve overall simulator performance is 
ongoing.  IEFS contains several processor-intensive 
modules, which include the flight dynamics model, an 
out-the-window display, the glass cockpit display, and the 
neural net icing characterization.  While a modern 
Pentium-based PC is capable of executing one or two of 
these modules concurrently, a complete simulation 
requires the use of multiple processors for real-time 
execution of all modules.  To this end, the next generation 
IEFS will run as a distributed simulation over many 
networked PCs, each handling one or more individual 
simulator components in parallel.  The next-generation 
IEFS distributed model combines a client-server 
architecture with some peer-to-peer features for increased 
performance.  As depicted in Fig. 14, a central server will 
maintain the master simulation state and communicates 
with each of the clients using the TCP/IP protocol in a 

 
Fig. 14  Future expansion of the IEFS client-server layout 
showing a sample state transfer by two different methods: 
broadcast and client-server. 
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networked environment.  The clients, in turn, will host the 
simulator modules, with each module running in a 
separate process.  One machine may host several module 
processes, although processor-intensive modules will be 
run on dedicated PCs for practical real-time execution.  A 
prototype of this network-based system currently drives 
Microsoft Flight Simulator for out-the-window and 
external aircraft views, as shown in Fig. 15.  Here, Flight 
Simulator's internal flight dynamics are bypassed while 
aircraft state is instead obtained from the IEFS server.  A 
more detailed description of this work is available in 
Deters et al.33  
 
 

 
 
Fig. 15 An external view of the Twin Otter in Microsoft 
Flight Simulator, with the flight dynamics and aircraft 
state driven by the IEFS. 
 
 
 
4.0  Conclusions 
 
This paper reviewed the progress toward developing the 
technology for a smart icing system.  Based on the 
research completed to date several conclusions can be 
drawn: 
• A sophisticated 6 DoF simulation has been developed 

and used to study the effect ice accretion on aircraft 
performance and control. 

• Large icing effects on aircraft have been documented 
and the effect of windshear found to differ 
significantly from an icing encounter.  Gravity waves 
have more similar characteristics. 

• Neural networks have been identified for use in 
analyzing the many sensor inputs for the system.  
Good results have been seen using stability and 
control derivatives and trim values to predict icing 
level. 

• Pilot information needs have been identified along 
with the importance of accuracy in command display 
information. 

• Multi-modal feedback shows promise in 
communicating icing information to pilots. 

• Initial flight deck display concepts have been 
proposed and are being tested. 

• Piloted flight simulation is under development using 
networked computing.  SIS systems are being 
implemented and tested on realistic flight scenarios. 
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