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A methodology for the inverse design of nonlifting axisymmetric and nonaxisymmetric bodies in incompressible

flow is presented. In this method, an inverse design approach based on conformal mapping is used to design a set of

airfoils in isolation. These airfoils are then assembled into a three-dimensional body and the flow over the body is

calculated using a panel method. The inverse design parameters for the isolated airfoils are adjusted by a

multidimensional nonlinear solver to achieve the desired aerodynamic properties on the three-dimensional body.

The method can be used with fairly complex geometries, such as bodies in the presence of a wing or keel. The

suitability and performance of several numerical schemes are compared in the paper. Several examples are

presented that demonstrate the flexibility of the design method when applied to various representative design

problems and they also show the ability of the method to match a known velocity distribution.

Nomenclature

A = area
B = approximate Jacobian
c = chord length
ci = control airfoil
F = vector of functional relations
fi = functional relations to be zeroed
h = surface displacement
J = Jacobian matrix
_m = mass-flux
n = dimension of nonlinear system
n = surface normal
Re = Reynolds number
s = arc length
si = control section
~s = arc length relative to beginning of section
u = normal velocity
ut = transpiration velocity
V1 = freestream velocity
_v = volume flux
~vi = relative velocity along a splined segment
xi = unknown variables
x = vector of unknown variables
�x = correction vector
� = angle of attack, deg
�� = segment design angle of attack
� = arc limit
~� = arc limit relative to beginning of segment
� = source strength
�V = velocity difference over a segment normalized by the

freestream velocity

Subscripts

i = segment number on an airfoil or the equivalent
segment of the body cross-section

p = unperturbed surface panel
t = transpiration

Introduction

E XTENSIVE research has been conducted throughout the past
century towards the design of more economical and efficient

aircraft by improving their aerodynamic performance. Much of this
research focused on improved wing design, which in turn led to
powerful inverse design methods for airfoils in isolation and lifting
surfaces. Fuselages and other nonlifting bodies received somewhat
less attention, to some extent due to the more complex three-
dimensional nature of the flow over these bodies and the fact that it is
more difficult to create a generalized scheme that can model a large
variety of geometries. Today, there are relatively few inverse design
schemes available that are suitable for the design of these types of
bodies. In the last few decades, various studies on the aerodynamics
of nonlifting bodies have, however, underlined the need for more
general inverse design schemes.

Under certainflowconditions and for simple streamlined bodies or
forebody shapes, there actually exist optimal shapes that can be
directly derived from linearized flow theories. One example is that of
axisymmetric bodies in supersonic flow, where the total drag is
dominated by wave drag. Examples of such optimal bodies include
those derived in thework of vonKarman [1], Sears [2] andHaack [3].
The drag of streamlined bodies in shock-free subsonic flow, the topic
of this paper, is mainly due to viscous effects that are in turn strongly
related to the boundary-layer development. The complexities of this
type of flow makes it difficult to derive generalized equations that
describe the shapes of bodies with minimum drag. Furthermore, the
designer often requires a more complex shape than a simple body of
revolution. More general inverse design schemes are therefore
required.

In contrast to the limited number of methods available for the
inverse design of nonlifting bodies such as fuselages, a number of
highly refined methods have been developed for the design of
isolated airfoils and even multi-element airfoil geometries in two-
dimensions. In fact, inverse aerodynamic design of airfoils has been a
subject of investigation for a long time, dating as far back as the early
airfoil research of the 1930s and 40s [4,5]. Since the 1970s, some
highly specialized airfoils have been developed using more modern
inverse aerodynamic design techniques [6], to a large extent made
possible by the rapid advances in computer technology. Early
methods were limited to single design points [7–9]. Over the last few
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decades, however, these methods have been refined to allow inverse
design with multiple design points [10], and even the direct
prescription of boundary-layer growth parameters [11,12].

Eppler [10] developed an airfoil design theory based on conformal
mapping that is today still a popular practical airfoil design method.
His method gives the designer the ability to divide the airfoil into
segments. A design angle of attack relative to the zero-lift line is
prescribed for each segment, which corresponds to an angle of attack
at which the velocity along that segment will be constant. This
formulation provides the designer with a genuine multipoint design
tool, which provides the ability to prescribe multipoint objectives
directly at the design stage. Selig and Maughmer [11,12] developed
Eppler’s [10] original theory further by adding the ability to prescribe
a nonconstant velocity along a segment at the segment’s design angle
of attack. The method was further generalized to allow for both finite
trailing edges and cusped trailing edges. In addition, the method can
be linked to amultidimensionalNewton iteration procedure to satisfy
additional design constraints such as airfoil pitching moment
coefficient and maximum thickness. The Selig and Maughmer
[11,12] method was implemented in the PROFOIL inverse design
code. PROFOIL was developed further to provide a multi-element
airfoil design capability [13,14], and it has also been used for the
design of finite wings [15,16].When used as amulti-element scheme
or for the design of three-dimensional wing geometries, several
airfoils are designed in isolation and then assembled to represent the
actual flowfield. A customNewton iteration scheme is used to adjust
the conformal mapping parameters to match desired aerodynamic
and geometric properties on the three-dimensional wing or themulti-
element airfoil system. In the case of a wing, the airfoils are used to
define the cross sections of the wing at various spanwise locations.

Work on the inverse design of fuselages and other nonlifting
bodies has been more limited, but the development of such a method
would have great significance. For example, Dodbele, et al. [17]
noted that the fuselage of a typical commercial aircraft may produce
slightly less than 50% of the total parasite drag of the complete
aircraft when the surfaces (including the wing and empennage) have
all-turbulent flow. When extended laminar flow is present on the
lifting surfaces, which is typical of modern designs, the fuselage can
produce as much as 70% or more of the total parasite drag. These
numbers demonstrate that a reduction in the fuselage drag
contribution will have a significant impact on the total drag of an
aircraft. To improve the extent of the laminar boundary-layer, while
limiting any areas of separation, more direct control over the velocity
and pressure distribution on the fuselage is needed. The possible
applications of a general inverse design method also extend beyond
fuselage design: work done by Lutz and Wagner [18] on shape
optimization of airship bodies demonstrated the usefulness of a
custom inverse design method to decrease drag through delayed
laminar-to-turbulent transition. Unfortunately, the scheme used in
their studywas limited to axisymmetric bodies at zero angle of attack.
The purpose of the current research is to extend the capability of
existing inverse design methods to the design of nonlifting bodies
and, ultimately, to complex three-dimensional geometries that
include both lifting and nonlifting components.

There are a number of different approaches to inverse design. The
curvature method [19–21] uses the curvature to obtain the shape in
three-dimensions. This method uses the change in velocity to drive
the curvature. An alternativemethod is to use the surface of an airfoil,
whereby this surface is defined by specifying the velocity
distribution in two-dimensions. The latter method is adopted in the
current work to assist in the design of general bulbous bodies and is a
continuation of previous work done on axisymmetric bodies [22].
Several airfoils are designed in an inverse manner in isolation
through conformal mapping and then used to define a three-
dimensional body such as a fuselage. A surface is wrapped around
the resulting wire frame and then discretized for analysis. The three-
dimensional velocity distribution over the body is calculated with a
low-order panel method and compared with the distribution over the
isolated airfoils. The velocity distribution on the isolated airfoils are
then adjusted through a nonlinear solver to match the three-
dimensional velocity distributions to the target distributions. Two

suitable numerical schemes for solving the nonlinear system will be
discussed, as well as a method to increase the speed of Jacobian
evaluation at a slight cost in accuracy and convergence rate.

Methodology

Inverse Airfoil Design

The Selig and Maughmer [11,12] method, as briefly described in
the introduction, provides the capability to design airfoils through
direct manipulation of the velocity distribution over the airfoil within
specified geometry constraints. The method, as implemented in the
PROFOIL airfoil design code, has been used successfully for the
design of a range of custom airfoils. The goal of the present study is to
develop a method with the same level of control over the velocity
distributions on three-dimensional bodies that PROFOIL offers over
the velocity distributions of airfoils in isolation, while also
maintaining the capability to add geometric constraints such as
maximum thickness.

Various velocity distributions can be specified at the design angle
of attack of an airfoil segment when using PROFOIL for the inverse
design, including 1) Constant velocity along a segment (similar to
Eppler’s [10] design code); 2) Linear velocity distribution along a
segment; and 3) Splined velocity distribution with control over the
intermediate points and end conditions. Figure 1 shows how one
segment is selected in the �-plane and its physical representation in
the z-plane. Figure 2 gives some examples of the different
distributions listed. The velocity distributions in these figures are
shown relative to the value at the start of the segment and, therefore,

denoted ~vi for each segment i. Correspondingly, ~�i and ~si are,
respectively, used for the relative arc limit and the arc length along
the airfoil surface for segment i.

The notation �V2D will be used to denote the velocity difference
over an airfoil segment. The subscript 2D is used to differentiate
between the velocity distribution over the isolated element and the
element when assembled into a three-dimensional body (subscript
3D), which will be described later. The design angle of attack ��

relative to the zero-lift line on a given airfoil segment can be specified
directly, or adjusted by the Newton iteration to satisfy one of the
additional constraints such as the design pitchingmoment coefficient
or the airfoil thickness. Because lift coefficient is approximately
equal to 0:11 � �, with� given in degrees relative to the zero-lift line,
it is also possible to use this parameter to prescribe the velocity
distribution over a segment for a design lift coefficient rather than a
design angle of attack. The concept of these design angles of attack
was pioneered by Eppler [10,23,24]. As mentioned in the
introduction, Selig and Maughmer [11,12] rewrote the governing
equations so that nonconstant velocities at the design angle of attack
can also be used. The present work deals with nonlifting bodies and,
therefore, the design angle of attack is usually set to zero. Nonzero
values are, however, used in cases where the design angle of attack is
used as an iteration variable, such as for satisfying the thickness
constraints.

Three-Dimensional Inverse Design

The current method uses the airfoils designed in isolation with
PROFOIL to define a three-dimensional wire frame. A nonuniform
rational B-spline surface is then wrapped over this frame and
discretized for analysis. A low-order panel method is used to
calculate the three-dimensional velocity distribution, which in turn is

plane planez

i

~

is~

ζ

ϕ

Fig. 1 Airfoil segment in �-plane and z-plane.
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used in the Newton iteration scheme. The method is outlined in
Fig. 3.

The�V2D value over a segment on an isolated airfoil, as well as its
design angle of attack ��, are specified directly in PROFOIL.
Figure 4a shows an example of this specification. In the example, the
isolated airfoil is divided into three segments on the upper surface. In
the figure, three different�V2D values are compared over the second
segment of three symmetrical airfoils. The design angle of attack for
the second segment is set to zero and, therefore, the velocity
distributions are also compared with the airfoil set to zero angle of
attack. The three resulting airfoils are shown in Fig. 4b.

The three test airfoils shown in Fig. 4b are used to define three
different axisymmetric bodies. Figure 4c was generated using
CMARC [25] to calculate the potential flow velocity distributions on
the axisymmetric bodies. CMARC is a C�� port of the Fortran
code PMARC [26], and was used for all the three-dimensional flow
computations in the current work. It can be seen in Fig. 4c that
changing �V2D over a segment on the isolated airfoil produces a
similar trend on �V3D on the axisymmetric body, even though the
absolute velocities are quite different, and the linear distributions for
the 2D case become slightly curved for the 3D case.Nevertheless, the
similarity in the trends between �V2D and �V3D make the isolated
airfoil�V2D values ideal design parameters and much easier to work
with than the entire set of surface nodes on the airfoils. A nonlinear
solver is used to adjust the �V2D values until the required �V3D is
satisfied for that segment.

Another important trend seen in Fig. 4c is that the resulting change
on the three-dimensional velocity distribution is localized to the part
of the distribution that corresponds with the segment being
controlled in the two-dimensional distribution. This is of particular

significance as it helps to decouple the three-dimensional velocity
distributions on the individual segments. Although flow over
nonaxisymmetric bodies with some crossflow components are
inherently more complex, the current approach still succeeds as long
as the control airfoils are aligned with the streamlines in an
approximate way. The validity of the approach will be demonstrated
in the examples to follow.

The iteration procedure as explained earlier was originally
implemented into a Newton solver and was able to produce the
required pressure distribution on axisymmetric three-dimensional
bodies [22] reliably. One equation is added to the multidimensional
iteration scheme for each segment on the three-dimensional body
where a specified �V3D is required. The iteration parameter in the
scheme is the isolated�V2D whereas the value to be set equal to zero
(the root) is the difference between the required�V3D and the�V3D

calculated from the three-dimensional panel method analysis.
Additional design parameters may be added to control thickness,
absolute velocity at a point on the airfoil, or other geometric or
aerodynamic requirements.

In the case of nonaxisymmetric bodies, each segment of interest on
the body corresponds to a unique control airfoil. In cases where
geometric and flow symmetry is required, one control airfoil can be
“shared” by more than one body segment. The numbering scheme in
Fig. 5 will be used in the current paper unless noted otherwise. In this
figure, a body that is symmetrical in both the xy- and xz-planes is
shown, demonstrating how control airfoils may be shared by
different control segments. In the example in the figure, control
airfoil c1 is assigned to sections s1 and s5. Control airfoil c2 is
assigned to sections s2 and s4. Finally, control airfoil c3 is assigned to
section s3. Symmetry through the xz-plane is enforced by the panel
code to minimize the computational time for symmetrical flow
problems.
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Fig. 2 Most common prescribed velocity distributions.
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Fig. 3 Axisymmetric body resulting from an airfoil designed via the
inverse method.

1772 BROUGHTON AND SELIG



Numerical Schemes

Newton–Raphson Method

Newton–Raphson iteration is frequently used to solve nonlinear
systems of equations due to its quadratic convergence properties
[27,28]. This method is also already used internally in the PROFOIL
airfoil design code. The method solves a system of nonlinear
equations of the form

fi�x1; x2; . . . ; xn� � 0 for i� 1; 2; . . . ; n (1)

which can also be written as

F �x� � 0 (2)

The Jacobian of the system is defined as

J �x� �

@f1�x�
@x1

@f1�x�
@x2

� � � @f1�x�
@xn

@f2�x�
@x1

@f2�x�
@x2

� � � @f2�x�
@xn

..

. ..
. ..

.

@fn�x�
@x1

@fn�x�
@x2

� � � @fn�x�
@xn

2
66664

3
77775

(3)

The Newton–Raphson iteration process is started with an initial
approximation of the unknown variables x. In the current
implementation, the initial approximation is usually selected by
assuming the aerodynamic properties of the flow along the design
sections on the three-dimensional body are similar to the two-
dimensional properties on the control airfoils as designed in
PROFOIL. Once the initial values of x are known, it is possible to
evaluate the function values F and the Jacobian J. The correction
vector �x is now computed by solving the linear system

J �x��x��F�x� (4)

Once the Newton step is known, the unknown variables x are
updated via

x new � xold � �x (5)

The likelihood of convergence for most solvers dedicated to the
solution of nonlinear problems is highly dependent on the nature of
the nonlinear system and the initial estimate of the unknown
variables x. To improve the likelihood of convergence from almost
any initial approximation, various methods such as line searches and
backtracking can be used [27,28]. The current implementation was
modified from the algorithmpresented in [27] and automatically uses
a line search and backtracking if the full Newton step does not
decrease the residue sufficiently. The line search and backtracking
are usually only required when the initial approximation is far from
solution.

Broyden’s Method

A disadvantage of Newton’s method is that the Jacobian has to be
computed before each Newton step can be taken. In cases where the
function evaluation is performed via a numerical scheme, such as the
panelmethod analysis used in the current design procedure, the exact
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Jacobian is generally not known. Derivatives have to be evaluated
numerically, typically via a forward difference scheme. Although a
numerical procedure may be acceptable for relatively small systems,
the numerical evaluation of the Jacobian can quickly become the
most expensive component of the solution process. A family of
methods known as quasi-Newton or secant methods exist that
provide rapid approximations to the Jacobian for root finding. One of
the most popular of these methods is Broyden’s method [29].

At a given time step k, it is assumed that an approximation for the
Jacobian B is known. In a process similar to Newton’s method, it is
possible to solve �xk via the system

B k�xk ��Fk (6)

The unknown values x can now be computed for the next iteration
step (k� 1) via

x k�1 � xk � �xk (7)

Once xk�1 is known, Fk�1 can be evaluated. Broyden’s method
now consists of finding Bk�1 so that it satisfies

B k�1�xk � �Fk (8)

with �Fk � Fk�1 � Fk. Broyden showed thatBk�1 can be computed
via

B k�1 � Bk �
��Fk � Bk�xk�

�xk � �xk
�xtk (9)

The iteration process can now proceed without computing the
Jacobian directly through function evaluations. The method still
needs an initial approximation for the Jacobian, which is provided in
the current implementation through a finite difference analysis. The
same line search and backtracking procedure as used in the Newton–
Raphsonmethod is used to improve the likelihood of convergence. It
is also possible to reevaluate the Jacobian through direct function
evaluations in instances where the backtracking scheme fails.
Although Broyden’s scheme exhibits superlinear convergence
instead of the quadratic convergence rate of Newton–Raphson
iteration, the savings in the Jacobian evaluation is significant.

Sensitivity Analysis

Both Newton–Raphson iteration and Broyden’s method require a
Jacobian evaluation. Although Broyden’s method only requires an
initial Jacobian, even this one Jacobian evaluation can take a
significant amount of time, as a minimum of one full flow evaluation
is required for each design variable. One method to accelerate the
sensitivity analysis is to simulate small geometric perturbations by
adding a transpiration velocity to each panel. The transpiration
method is often used to model viscous/inviscid interaction when
combining a boundary-layer model to a panel method. These
methods use a transpiration velocity through each panel to displace
the surface streamlines the same distance as given by the boundary-
layer displacement thickness. In the current methodology, the
purpose of the transpiration velocity is to displace the surface
streamlines the same distance that a small geometric perturbation of
the surface would displace them.

The advantage of the transpiration approach over physically
adjusting the surface of the body is that the influence coefficient
matrix of the flow analysis method can be kept unaltered, whereas
only the boundary conditions have to be adjusted. In the case of a
panel method such as the one used in the current design procedure,
the transpiration values are incorporated into the solution by
adjusting the known source strengths, which in turn are used to
compute the right-hand side of the linear system so that only the
doublet strengths remain as unknowns.

The amount of transpiration, or blowing, required can be
determined by considering a control volume between the original,
unchanged surface and the new surface. The lower face of the control
volume represents the original surface and the surface to which the
transpiration velocityut will be applied. The upper face of the control

volume represents the new body and, because this new surface will
become a stream surface, there is no flow through the upper face. It
can be shown that the transpiration velocity through the original
surface is given by [30]

ut �
@uh

@x
� @vh

@y
(10)

Equation (10) relates the required local transpiration velocity
through a surface to the required deflection of the off-surface
streamlines to simulate a small perturbation to the surface shape. The
average transpiration velocity through each surface panel can be
approximated using this equation when a panel method analysis is
used for the flow evaluation. However, the calculation of the local
partial derivatives @uh=@x and @vh=@y can become complicated in
practice. In addition, the equation only gives the local required
transpiration velocity at one point on the panel. Because the velocity
distribution over one panel can be quite complex, the local
transpiration velocity required at, for instance, the control point of the
panel may be significantly different to the average transpiration
velocity required over the entire panel. A more practical approach is
to consider the volume between the original surface and the
perturbed surface. This volume is then divided into a number of
control volumes, each with its lower face represented by a panel on
the original surface, and its upper face represented by an equivalent
panel on the perturbed surface. When using this approach, it is
necessary to move the nodes approximately normal to the original
surface when discretizing the perturbed surface. An example of a
control volume formed by thismethod is shown in Fig. 6. It should be
noted that the surfaces in this control volume may be slightly
deformed and that the original and perturbed panel may also not be
completely flat surfaces. Some accuracy is lost when the faces of the
control volume are not completely flat.

Figure 6 also shows an additional complication when calculating
the transpiration volume, namely that even if the nodes are moved
normal to the local surface when perturbed, this movement is not
necessarily normal to the panel to which that corner point belongs
because the surface panels only approximate the actual surface of the
body that is analyzed. Once each “control volume” is established
between the original surface and perturbed surface, a process very
similar to the method used for deriving Eq. (10) can be used to
determine the average transpiration velocity required through the
original surface panel. Themass-flux through each face of the control
volume is required to satisfy continuity:

_m 1 � _m2 � _m3 � _m4 � _mt � 0 (11)

In the preceding continuity equation shown, all the mass-flux
values are taken to be positive into the control volume. If the flow is

Pb

Pb

Pa

Pa

Pc

Pc

Pd

Pd

Fig. 6 Control volume between original and perturbed surface panel.
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assumed to be incompressible, the mass-flux values can be replaced
with volume flux values:

_v 1 � _v2 � _v3 � _v4 � _vt � 0 (12)

The volumeflux through faces 1–4 is computed byfirst calculating
the average velocity through each face, based on a flow analysis over
the original surface, and then multiplying it by the area of each face.
The volume flux through face 1 is, for instance, given by

_v 1 � �u1A1 (13)

where �u1 is the average normal velocity through face 1 and A1 is the
area of face 1. The transpiration velocity is then calculated using
Eq. (12) that, when rewritten to isolate ut, becomes

ut �� _v1 � _v2 � _v3 � _v4
Ap

(14)

where Ap is the area of the original panel.
In the current designmethodology, one flow analysis is performed

with the original, unperturbed shape. Once the velocities at all the
nodes are determined, the geometry is perturbed slightly and care is
taken to move the nodes approximately normal to the local surface
tangents. Equation (14) is used together with the procedure
previously outlined to determine the necessary transpiration velocity
through each panel. The source strengths, which are incorporated
into the right-hand side of the linear system in the CMARC
formulation, are then adjusted to account for the normal velocities
through each panel surface via the relation

� � 1

4�
�ut � n � V1� (15)

Once the source strengths are known, the right-hand side of the
linear system can be recomputed and the system can then be solved
for the doublet strengths. The solver built into CMARC/PMARC is
an iterative solver that was not designed for multiple right-hand
sides. Instead of using the solution from CMARC, the current design
methodology uses an LU-factorization on the influence coefficient
matrix originally computed by CMARC. Back substitution is then
performed on the multiple right-hand side vectors to evaluate the
Jacobian after a single LU-factorization.

Performance of Numerical Schemes

The preceding numerical schemes described were evaluated by
designing a fairly complex bulbous body. The example used to
obtain the figures below was chosen so that no backtracking was
required during the iteration process. A total of 37 design variables

were used over three control airfoils, which results in 37 unknowns in
the nonlinear system. The example uses 2400 surface panels, which
is representative of the number of surface panels typically used in
more complex problems. Four different combinations of solvers
were compared. In the following list, all Jacobian evaluations were
performed via a forward difference procedure: 1) Newton–Raphson
iteration combinedwith direct CMARCevaluations for the Jacobian;
2) Newton–Raphson iteration combined with Jacobian evaluations
through the transpiration method; 3) Broyden’s method combined
with direct CMARC evaluations for the initial Jacobian; and
4) Broyden’s method combined with an initial Jacobian evaluated
through the transpiration method.

Figure 7 shows the convergence history using each of the
preceding methods listed. Table 1 shows the computational time for
the entire design process on a 1.8 GHz Pentium 4 processor. As
expected, the Newton–Raphson method combined with direct flow
analysis for the Jacobian evaluations displays the highest
convergence rate (fewest iteration steps). However, this method is
also the most costly in computational time due to the slow Jacobian
evaluations. The remaining methods all use a more approximate
Jacobian and, therefore, display lower convergence rates (more
iteration steps) than the first method. Computational time varies
considerably between the methods. Broyden’s method combined
with a Jacobian evaluation through the transpiration method is
almost 75% faster than the first method. Experience with the design
method has, however, shown that the less accurate Jacobian resulting
from Broyden’s method, as well as the approximate transpiration
method, tend to be less robust in terms of global convergence, so that
the slower method is sometimes preferred to improve the likelihood
of finding a solution.

Examples

Three examples are shown in this section to demonstrate the
flexibility of the new design method. The first demonstrates the
ability of the current method to exactly match a target velocity
distribution. Only one control airfoil is used to produce an
axisymmetric shape. The second example shows two cases of
“squashed” bodies. In this example set, the �� value over the first
segment behind the leading edge is used as a design variable to
control the maximum thickness of each airfoil. The maximum
thickness of each airfoil in turn is chosen to produce the squashed
shape. A slightly favorable pressure distribution with a constant
slope over most of the forward 60% of the chord is prescribed.
Finally, a complex example showing the influence of a second
component in the flowfield is shown. In this last example, a constant-
chord symmetrical keel at zero angle of attack is added to the body to
simulate the bulb and keel of a competition sailing yacht.

Design of an Airship Body

The goal of the first example is to demonstrate the capability of the
current method tomatch a known velocity distribution. The example
verifies that the method will converge from an arbitrary (but
physical) initial velocity distribution to another known velocity
distribution. The reader should note that when a designer is faced
with a new design, he/she will usually not know exactly what the
velocity distribution should look like over the entire body because
the influence of the geometric constraints on the velocity distribution
are not known. Later examples will demonstrate how the designer
can specify velocity gradients over only part of the body while
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Fig. 7 Convergence history of 37-variable test case.

Table 1 Performance of different numerical schemes for a systemwith

37 design variables

Scheme Steps t

Newton (CMARC) 2 1536 sec
Newton (transpiration) 6 808 sec
Broyden (CMARC) 4 760 sec
Broyden (transpiration) 6 392 sec
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allowing those on other parts of the body to be adjusted by the
method to match additional constraints.

Lutz andWagner [18] investigated possibilities for drag reduction
on airship bodies in various design regimes through shape
optimization. Their method used an inverse design scheme based on
a source distribution along the body axis. One of the bodies designed
by them had a velocity distribution optimized for a volumetric
Reynolds number of 1 � 106. The velocity distribution produced by
their method has a favorable pressure gradient over the first 0:75c,
followed by a fairly steep recovery. In the current example, it will be
demonstrated how the new method can be used to reproduce the
velocity distribution over the entire airship body. The source-based
method produced a bodywith a blunt trailing edgewith a diameter of
approximately 1% of the body length. PROFOIL’s ability to design
airfoils with blunt trailing edges was used to reproduce the same
blunt trailing edge geometry for the current example.

The design processwas initiated by dividing the control airfoil into
13 segments. In the design of this airfoil, the segment endpoints are
moved to specific x=c positions where the local velocities were
known from the original design. Across each of these segments, the
required velocity difference for the final design was entered as a
�V2D value. Although this will not produce the target velocity
distribution exactly on the axisymmetric body, it does result in a
fairly good initial condition for the nonlinear solver. A splined
segmentwas used over the recovery region between 0:70c and 0:90c.
In addition, a splined segment was also used over the pressure peak
near the leading edge. Some freedomwas allowed over the last 0:10c
so that a reasonable airfoil could be produced for each step in the
iteration process. The resulting initial three-dimensional velocity
distribution is compared with the target distribution in Fig. 8. The
distribution of segments and the numbering scheme is also shown in
the figure. Although there are some differences at this stage, the
general trend is already very similar to that of the target distribution.
The resulting geometry is compared to the geometry produced by
Lutz and Wagner’s method [18] in Fig. 9. The most noticeable
difference between the two geometries at this stage is the difference
in thickness. It is possible to directly prescribe a thickness in the new
method, but for the purposes of this demonstration only the velocity
distribution is controlled with no constraint on the thickness.

The velocity differences over all the segments on the
axisymmetric body were specified as target velocity differences for
the three-dimensional Newton iteration scheme. Segment 2, which
models the recovery region, was divided into four subsections and
the velocity difference at each node of the resulting spline was
specified. The spline used over the pressure peak only consisted of
two segments, and it was used to lower the peak level slightly to
closer approximate the required distribution. Finally, the absolute

velocity at the 0:10c location was specified by iterating on the two-
dimensional velocity difference on the leading edge segment.

The resulting velocity distribution after completion of the iteration
process is compared with the target distribution in Fig. 10. It can be
seen that the current method was able to closely match the specified
velocity distribution, except for a slight difference over the last 0:10c
of the airfoil. The shapes are compared in Fig. 11. Note that the
designed and target shapes are very similar, and that the initial
difference in thickness between the designed and the target geometry
had been eliminated.
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Fig. 8 Comparison of target and initial design velocity distributions.
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Fig. 11 Comparison of target and final design geometries.
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The number of segments selected was arbitrary. Once the inverse
design process is complete and the resulting velocity distribution has
been compared with the target distribution, the designer has the
option to increase the number of segments in areas where he requires
a closer match to the target distribution. An alternative approach is to
convert the velocity distributions on some segments to splined
velocity distributions, which give more control over the shape of the
distribution on those particular segments.

Squashed Bodies

The following example shows two different designs that are
related in that they both have identical velocity gradient
requirements. In the first case, a body is squashed by prescribing a
different thickness in the xz-plane than in the xy-plane. The cross-
section at each station of the body is defined by four quarter-ellipses,
implemented in the design code via quadratic rationalB-splines with
theweight values selected to exactly represent the quarter-ellipses. In
the second case, the control airfoil describing the lower surface of the
body is constrained to be thinner than the control airfoil describing
the upper surface, thereby producing a slight droop or camber in the
body. Each body uses three control airfoils: an upper vertical, a
horizontal, and a lower vertical control airfoil. Symmetry in the xy-
plane is assumed. This scheme is the same as shown in Fig. 5, except
that control airfoils s2 and s4 shown in that figure are not required.

A target velocity distribution with a constant, favorable gradient
over the forward portion of the body is prescribed. This gradient is
prescribed from approximately 0:08c to 0:60c. Eleven segments are
used along the airfoils. Figure 12a shows the numbering of these
segments. Splined velocity distributions are used on segment 2 (the
recovery region) and segments 3, 8, 9, and 10.

Case 1

In case 1, which is symmetrical in both the xz-plane and the xy-
plane, it was found that no further iteration is required in the recovery
regions of the control airfoils. However, the shape of the recovery
region of the airfoil in the horizontal plane was specified slightly
differently to that of the other two control airfoils. The splined
velocity distributions used on segments 3, 8, 9, and 10 were only
added as a refinement to produce more linear velocity distributions
on the three-dimensional body. The thicknesses of the three control
airfoils were selected to produce a body that is 18% thick inwidth and
12% thick in height. The �� value of segment 11 was used as the
iteration variable to achieve the respective thicknesses of the control
airfoils. This does result in slightly different velocity distributions in
the leading edge region of the control sections, as well as a slight
difference in absolute velocities.

x/c
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

3D Distribution (Converged)
3D Distribution (Initial)
2D Distribution (Converged)

V
V∞

2
34810

11

x/c
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

3D Distribution (Converged)
3D Distribution (Initial)
2D Distribution (Converged)

V
V∞

x/c
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

3D Distribution (Converged)
3D Distribution (Initial)
2D Distribution (Converged)

V
V∞

a) Section s1

b) Section s2

c) Section s3

Fig. 12 Velocity distributions over the control sections of a squashed

body.
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Fig. 13 Comparison of three-dimensional velocity distributions over

sections s1–s3 of a squashed body.
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Figure 12 shows the two- and three-dimensional velocity
distributions at each of the control sections. Both the initial and
converged three-dimensional distributions are shown. Notice how
close the initial distribution is to the target distribution. The main
reason for the small difference before and after the iteration process is
that the maximum thickness of each control airfoil is held constant
throughout the design process. The absolute velocity, therefore,
changes very little throughout the design process. The final velocity
distributions for all three control sections are coplotted on Fig. 13.
Notice that section s2, which is thicker than sections s1 and s3, has a
slightly different absolute velocity over segments 2–9, but that it is
very close to the other two. Section s2 does, however, have a very
different velocity distribution in the leading edge region and a
slightly different distribution in the recovery region. These
differences are a result of the different thickness constraints and is,
therefore, a compromise between aerodynamic and geometric
requirements. The fact that it is possible to isolate these differences to
specific regions of the velocity distribution is, however, very useful
to the designer. Figure 14 shows the locations of the control sections
on the final body. Figure 15 shows an isometric view and front view
of the final geometry.

Case 2

Case 2 is similar to case 1 except that different thickness
constraints were used on the three control airfoils. The upper surface
of 18% thick symmetrical airfoils were used to define sections s1 and
s2, whereas the upper surface of a 12% thick symmetrical airfoil was
used to define section s3. The velocity distribution requirementswere
the same as in case 1.

The final velocity distributions for the three control sections are
coplotted on Fig. 16. Notice that all three sections differ slightly in
the velocity levels as well as in the leading edge and recovery
regions. However, the velocity gradient over segments 2–9 is
virtually identical and is required for all three sections. Figure 17
shows the locations of the control sections on the final body.
Figure 18 shows an isometric view and front view of the final
geometry.

Racing Yacht Bulb with Keel

It is a common practice for designers to divide a complex
geometry, such as that of an aircraft, into smaller and more simple
components and then to design these in isolation. Once these
components are assembled, the flow may be considerably altered
from the conditions assumed during the design of the isolated
components. Usually a system of fairings are used to alleviate some
of the problems that arise, whereas other problems may need a cut-
and-try method where the isolated components are redesigned until
the flow over the assembled geometry is deemed acceptable. The
design process would be considerably more efficient if the designer
could design the components in their final assembled form from
beginning. In the current example, the design of a typical underwater
bulb of the type used by some racing yachts is shown. The keel is
placed in the flowfield throughout the design process. The size and
geometry of the keel is kept constant for this example, and it is
assumed that the keel is nonlifting.
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Fig. 14 Location of control airfoils on final squashed body.
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Fig. 15 Final squashed body geometry.
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sections s1–s3 for case 2.
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The section numbering is identical to that shown in Fig. 5, with the
vertical keel intersecting section s1 on the upper surface of the bulb.
A velocity distributionwith a constant gradient similar to those in the
previous examples was required on the bulb. There are, however,
significant complications due to the presence of the keel. Most
notably, the presence of the leading edge stagnation point makes it
unrealistic to expect a constant gradient on the upper surface of the
bulb in the direct vicinity of this point. It is, however, possible to
achieve some control over the velocity distribution slightly outside
this region (for instance in the vicinity of section s2). A keel with a
chord of 20% of the length of the bulb is used. Because this keel is
relatively small, it is also possible to control the velocity distribution
in front of and behind it with some flexibility allowed for about 10%
of the length of the bulb in front of and behind the keel.

The initial and final three-dimensional velocity distributions, as
well as the final two-dimensional velocity distributions over the
upper three control sections of the bulb, are shown in Fig. 19. The
numbering scheme used on the individual segments is shown in
Fig. 19a. Notice that the recovery region is labeled as segment 1 in
this case, as it was not defined with a splined segment as in the
previous example. The three-dimensional distribution shown over
segment 3 of control section s1 as shown in Fig. 19a is actually the
distribution as calculated around the root of the keel, as no velocity is
defined inside the keel where segment 3 is blanked out. The two
stagnation points are located in front of and behind segment 3. The
panel method applies boundary conditions at the panel centroids
rather than at panel nodes, and some interpolation and/or
extrapolation between neighboring panels is, therefore, required to
calculate velocities at nodes. Because the two stagnation points are
located at panel corners, the velocities shown at these nodes are
approximate and the stagnation points are not fully captured; the
velocities shown in the figures are, therefore, nonzero at these points.

Control section s2 is particularly interesting. Figure 19b shows the
initial and final three-dimensional distributions over this section.
Notice the fact that the initial distribution, shown by the dashed line
in the figure, displays some unwanted bumps and oscillations. The
“bump” in the region of segment 3 is particularly noticeable. To
“straighten out” the velocity distribution in this region, splined
velocity distributions were used on segments 2, 3, and 4 of section s2.
A splined distribution was used on segment 9, near the leading edge,
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Fig. 19 Velocity distributions over the upper three control sections of

the bulb.
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Fig. 18 Final squashed body geometry of case 2.
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on all control sections including section s2. As can be seen in the
figure, the new method was able to reduce the bumps in the velocity
distribution to a point where their effects will have been eliminated.
The result is a long, constant favorable gradient extending from
approximately 8% to 60% of the bulb length.

The velocity distribution over the control section in the horizontal
plane (section s3), is shown in Fig. 19c. It can be seen in this figure
that the effect of the keel is barely noticeable in the initial velocity
distribution and all remaining effects had been removed by the three-
dimensional iteration process. Because of the small effect of the keel
on section s3, it was not necessary to use a splined velocity
distribution on segments 2, 3, and 4 of this control airfoil. The
resulting velocity distributions on the two remaining control sections
were very similar to that on section s3. The final distributions on all
five control sections are coplotted in Fig. 20.Note that the differences
are almost completely limited to the leading edge region and to a
small extent to the recovery region. As explained in the preceding
paragraph, the distribution on section s1 is different over segments 2,
3, and 4 due to the presence of the keel. Figure 21 shows the final
geometrywith the locations of the control sections. Themesh used by
the panel method is shown in Fig. 22.

Conclusions

A hybrid approach has been developed for the design of complex
nonlifting bodies. A number of options for different numerical
schemeswere compared. Someof the capabilities of this newmethod
were demonstrated by designing three different configurations. The
first demonstrated the capability of the current method to reproduce a
known velocity distribution on an axisymmetric body. The second
example showed the capability of the method to produce specified
velocity distributions over some segments of a body, while also
satisfying certain geometric constraints, such as different thicknesses
in this particular example. The third example demonstrated the
capability of the current method to satisfy velocity distribution
requirements in a more complex flowfield, such as in the vicinity of a
second body or component. The speed of the numerical schemes
allow the designer to quickly and efficiently adjust the design
parameters as needed. Work is currently underway to expand the
method as demonstrated here to designmore complex configurations
that consist of a combination of lifting and nonlifting components.
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