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An existing transition prediction method for attached, two-dimensional. incompressible boundary layers 
based on linear stability analysis is ntended to separated, twowdimenslonal, incompressible boundary layers 
such as those found In laminar (transitional) separation bubbles. It is sbown why tbe present method, which 
tracks the growth of disturbances at many different frequencies, is more accurate than tbe so..called eovelope 
methods for nonsimilar boundary-layer developments. Reliance on a database of precalculated stabilily charac~ 
leristies of know. velocity profiles makes tbls method much faster than traditional stability calculations of 
similar accuracy. Th~ Falkn~r-Skan self-similar profUes are used for attached now, and a new, very general 
family of profiles Is used for separated flow. Comparisons witb measured transition locations inside tbe bubble 
show good agreement over the range of chord Reynolds numbers and airfoil angles of attack of interest. 

Nomenclature 
= width of separated shear layer 
= pressure coefficient, p - Por,/YlpU; 
= airfoil chord 
= skin-friction coefficient 
= disturbance frequency, Hz 
= amplitude of Coles's wake function 
= boundary-layer shape factor, 01/02 
= boundary-layer shape factor, 0)/02 
= distance of bottom of shear layer from airfoil surface 
= amplification factor at constant frequency 
= unsealed amplification factor at constant frequency 
= linear stability theory amplification factor 
= value of n at transition 
= static pressure along the airfoil surface 
= chord Reynolds number, Uor,c/I' 
= momentum thickness Reynolds number, U {hi I' 
= streamwise coordinate from the stagnation point 
= boundary-layer edge velocity 
= stream wise velocity inside the boundary layer 
= distance along airfoil chord from leading edge 
= normal distance from the surface 
= complex wave number of sinusoidal disturbance 
= dimensionless amplification rate, Im(a.·02) 
~ Falkner-Skan pressure gradient parameter, e/v (dU /ds) 
= boundary-layer thickness 
= boundary-layer displacement thickness 
= boundary-layer momentum thickness 
= boundary-layer kinetic energy thickness 
= Falkner-Skan similarity variable, y/~ 
= molecular viscosity of air 
= kinematic viscosity of air, Il/ P 
= Falkner-Skan characteristic thickness 
= density of air 

w· = radian frequency of sinusoidal disturbance 
w = dimensionless radian frequency, W·02/U 

Introduction 

T HE prediction of boundary-layer transition has been the 
object of research in fluid mechanics and aerodynamics 

for over half a century. The methods used today can be 
divided into two classes: empirical correlations and semi­
empirical methods. One of the most widely used correlations is 
due to Michel,l who related the transition Reynolds number 
based on the distance from the stagnation point on an airfoil 
to the value of the momentum thickness Reynolds number at 
transition. A similar criterion was developed by Eppler,2 who 
related the momentum thickness Reynolds number to the en­
ergy to the momentum thick.ness shape factor at transition. A 
different approach was developed by van Ingen) and indepen­
dently by Smith and Gamberoni. 4 A linear stability analysiS of 
the governing equations is performed, and transition is as­
sumed to take place when the amplification factor reaches a 
value previously correlated to experimentally observed transi­
tion locations. The amplification factor, denoted n(s). is de­
fined as the natural logarithm of the ratio of disturbance 
amplitude at station s to its amplitude at neutral stability, So. 
For similar flow environments the transition. or critical, value 
of the amplification factor has been reported to be about 9 by 
many researchers. In this approach, rather than correlating 
characteristic parameters of the flow arbitrarily, an attempt is 
made to model the actual physical process by which transition 
occurs. Linear stability theory, in fact, directly models the 
growth of instabilities in a boundary layer while indirectly, 
through the boundary-layer development, accounting for the 
effects of Reynolds number. Because of the empirical input 
regarding the value of n at transition, the en method is referred 
to as semiempirical. 
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The major advantage of the en method is its ability to account 
for the effect of the upstream boundary-layer development on 
the stability of the boundary layer. In contrast, empirical 
correlations such as Michel'S and Eppler's simply monitor 
local boundary-layer parameters and indicate transition when 
a certain local condition has been met, irrespective of the 
upstream history. The main disadvantage of the exact formu­
lation of the en method, however, is that it requires very long 
calculation times. The most widely used such method is the 
SALLY programS which, in fact, requires hours of CPU time 
on a mainframe for a sing1e-angle-of-attack airfoil analysiS. 
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To make linear stability theory easily accessible for routine 
applications, a number of approximations have been. devel­
oped. In the present paper three will be discussed: 1) the 
envelope methods of Gleyzes et al .• • 2) the envelope methods 
of Drela and Giles, 7 and 3) the approximate method of Stock 
and Degenhart. 8 Since the envelope methods are faster than 
Stock and Degenhart's method, they would be the preferred 
choice for use in the airfoil design process. The need to make 
an informed decision as to which of these two approaches to 
follow has motivated the careful analysis of their differences 
and similarities that is presented in this paper. It is shown that 
envelope methods lead to errors for nonsimilar boundary­
layer developments and. therefore. that the method of Stock 
and Degenhart is preferable in spite of its longer calculation 
time. More importantly. Stock and Degenhart's method is not 
limited to the Falkner·Skan profiles as the envelope methods 
but can be applied to any arbitrarily defined family of profiles. 

The method of Ref. 8 was developed for incompressible 
boundary layers developing between stagnation and laminar 
separation. In the present work this method is extended to 
separated boundary layers. Typical aerodynamic boundary­
layer flows that do not reach transition before laminar separa­
tion do so as a free shear layer and usually reattach as a 
turbulent boundary layer, thereby forming a laminar (or tran­
sitional) separation bubble. In the course of developing a 
model for such bubbles. as reported in Ref. 9, the need for an 
accurate transition model led to the present study. 

Theoretical Background 
Rather than performing a linear stability analysis of the 

boundary-layer velocity profile as can be obtained, for in­
stance, from a finite difference method at each downstream 
station. approximate methods make use a database of the 
stability characteristics of the Falkner·Skan profiles that is 
computed in advance. This database is then accessed during a 
boundary-layer calculation using the local shape factor and 
Reynolds number as coupling parameters. More precisely. the 
nondimensional growth rate - ai, corresponding to a particu­
lar value of the local shape factor of a Falkner-Skan profile 
and of the local Reynolds number. is divided by the local 
boundary-layer characteristic thickness (i.e .• the momentum 
thickness .5,) to obtain the physical growth rate. 

Given that the correct characteristic thickness is obtained 
independently, from the momentum integral equation, the 
manner in which the nondimensional database is generated is 
of no consequence. The most convenient way is to calculate 
the growth rates for self-similar developments at constant H12 
values and increasing Ra,. Starting from the Orr-Sommerfeld 
spatial instability analysis of the Falkner-Skan profiles at 
many different values of H 12• a set of neutral curves (for which 
a{ = 0) is generated, one for each value of shape factor. An 
example of these neutral curves is shown in Fig. 1 for two 
values of H 12• For each value of shape factor, the nondimen-
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Fia.2 Amplification curves for two values of Htl. 

sional amplification rate, - a;, is evaluated along rays of 
constant reduced frequency. 

2rl v 2r/(0,1 U) w 

F = U' = (Uo,lv) R., (I) 

to form curves - a;(Rtt,.. H il• F). The amplification factor for 
the development of each Falkner-Skan profile can be found 
from these curves. The definition of the amplification factor 
for a fixed-frequency disturbance is 

N(R.,. H 12• F) = [, - a~ ds t. 

J
R~ - a~ 

= dR., 
R.", (dR.,lds) 

(2) 

where the asterisk denotes a physical variable. For a Falkner­
Skan profile, 

Uo, U[( 2 ")~J~ ] R.,=-=- --- f'(I-f')d~ 
" " l+mU 0 

(3) 

where f is the dimensionless Falkner-Skan stream function, 
and m is constant and defined as 

s dU 
m(H,,)=- -

Uds 
(4) 

Denoting the momentum thickness integral (not a function of 
s) by I. 

I(H,,) = [f'(1 - f') d~ (5) 

the spatial derivative of the momentum thickness Reynolds 
number becomes 

Thus, Eq. (2) can be written as 

I JR., 
N(R.,. H 12• F) = [i - (ai 0,) dR., 

R.", 

(6) 

I [R~ 
= [I(H,,»)' JR.", - a;(R.,. H 12• F) dR., (7) 

In this way the original dimensionless eigenvalues of the di­
mensionless Orr-Sommerfeld equation can be used to find N~ 
which is defined in terms of a dimensional wave number and 
distance. This can be done for a self-similar profile, since 
dR~lds assumes the particular form shown. The curves ob-



DlNI, SELIG, AND MAUGHMER: SEPARATED BOUNDARY LAYERS 19S5 

20 

---- [q. <!!> 
'5 

n 

'0 

, , 
5 

, , 
0 500 1000 1500 R 

d2 

Fig.3 Growth 01 n through the step in Htl. 

tained with this integral for different frequencies and at con­
stant HI2 are shown in Fig. 2. 

An alternative way to construct the database, the method 
followed by Stock and Degenhart.8 is to store the result of the 
integration of the dimensionless wave number over the same 
Reynolds number ranges and for the same reduced frequencies: 

(8) 

where 01 is the preferred characteristic thickness. During a 
boundary-layer calculation. at each downstream station the 
(varying) reduced frequency is extracted from the desired con­
stant physical frequency using Eq. (1). and is then used to­
gether with the local values of shape factor and Reynolds 
number to access the correct value ofN. Using its neighboring 
values, the derivative cfN IdRol = - aj can be evaluated and 
then used in 

N(s,fJ= [, ~aids 
Jso 1 

(9) 

In this integral 5, is given by the boundary-layer development­
The envelope of a series of such N growths is the desired n(s) 
development. 

Approximate Envelope Methods 
In Refs. 6 and 7 the envelope of the integrals given by 

Eq. (7) for each value of H12 is approximated as a straight line. 
This leads to the following expression for the amplification 
surface for self-similar developments: 

n(R.,. H 12) = [::., (HI,)],[R., - R.,,(HlvJ (10) 

where the superscript e denotes a value obtained from the 
straight-line envelope of amplified frequencies, the actual 
functions for which are given in Ref. 7. Whereas in Ref. 6 the 
amplification integral is evaluated as 

n(s) = J::T !: (H12>J' dR., (11) 

in Ref. 7 the variable of integration is changed back to s: 

[, [ dn ]'dR 
n(s) = t, dR., (HI,) ~ ds (12) 

It is shown in Ref. 9 that the expression for dR.,lds used in 
Ref. 7 equals Eq. (6): 

dR., =.!. m(Hlv + 1 I(H ) = [[(HI,)]' 
ds6,2 I' 6, 

(13) 

where 

I(H,,) = U6j 
vs 

(14) 

Using Eqs. (2) and (6). the integrand in Eq. (11) can be written 
as 

[ 
dn ], [-aiJ' 

dR., (H,,) = (/'16,) (15) 

Here {- 01]~ is that distribution of aj On or near each amplifi­
cation rate surface Qj(Ro,,' w) for each value of HI2 that corre­
sponds to the straight-line envelope of the n growths. Using 
Eqs. (13) and (15). then. the integral for evaluating n(s) used 
in Ref. 7: 

n(s) = [, [~(H")]' m(H12) + I/(HI,) ds (16) J., dR., 2 6,(s) 

can be written, 

J
. [-ail' [' 

n(s) = ---ds 
" (['16,) 6,(s) 

(17) 

where 02(S) is taken from the nonsimilar boundary-layer devel­
opment as calculated by the momentum and energy integral 
equations. Canceling the I: 

n(s) = [, [- ai 6,J' ds 
to 02(S) 

_['[-a,j'ds 
J" 6,(s) 

(18) 

This expression is identical to that used by Stock and Degen­
hart! except that OJ belongs to the "envelope locus" rather 
than to the constant reduced-frequency rays. Using 01(S), 
Ro,,(s), or 52(s) as calculated by the governing equations is 
precisely what enables all these methods to account for up­
stream history on the growth of n. That is, the dimensionless 
growth rate - ai, obtained at each downstream station from 
the values of HI, and R.,. is divided by the local boundary­
layer momentum thickness. which is in general different from 
the value in a self-similar development at the same values of 
H'2 and R~. 

Errnr for NODsimilar Developments 
It would seem at first that all three methods of calculating n 

are equivalent; that is. Eqs. (9) and (18) would appear to lead 
to the same n (s). The envelope methods developed in both 
Refs. 6 and 7, however. introduce an error in the evaluation of 
n that increases in magnitude depending on how much the 
boundary-layer development diverges from self-similarity. 
Since aU three methods utilize the characteristic thickness 
from the nonsimiJar boundary-layer development correctly, 
the difference between the envelope methods and Stock and 
Degenhart's method must lie in the dimensionless value of aj 

accessed. 

• 

b 

h (2G -1) 

~ 
Fta- 4 GreeD'S ("'6--parameter reversed veloclty prome. 
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Even if the actual envelope of the amplification curves were 
used instead of the straight-line approximation, the n (s) devel~ 
opment would not correspond to the true envelope of the 
amplification curves at constant frequency along the airfoil 
surface. It is important to emphasize. however. that this error 
does not arise from taking the envelope in advance rather than 
at run time. In fact, although it is true that the operations of 
taking the envelope of a family of functions and integrating 
each function over a set interval generally do not commute, 
such a statement does not apply to either of the methods used 
in Refs. 6 or 7. In these envelope methods, in fact. the envel­
ope is taken after the integration is performed in Reynolds 
number space and is therefore entirely permissible. 

To understand why the envelope of Eq. (9) with respect 
to frequency (after duly exchanging ~ for 0,) does not equal 
Eq. (18) for nonsimilar developments. it is necessary to exam· 
ine Eq. (11) more closely. Equation (11) gives the amplifica­
tion factor as the integral of the derivative of Eq. (10) with 
respect to R~. In Ref. 6 this equation is proposed and used 
with the assumption that integrating the local growth rate of a 
self-similar profile at the local value of the shape factor with 
respect to Reynolds number is sufficiently accurate for obtain· 
ing the amplification factor in a nonsimilar development. 
However. since the amplification factor is affected by varia· 
tions in both R6" and R u , it is more correct to retain the total 
differential of the amplification factor surface. In general, 
using generic Reynolds number and shape factor symbols, 

J
R an JH an 

n(s)~ -dR + -dH 
R.aR H.aH 

[R (an an dH) 
~ JR. aR + aH dR dR 

=[(:;+:~:):ds (19) 

In Eq. (19), dH/dR and dR/ds are obtained from the 
boundary-layer development to ensure path dependency. as 
above, and the partial derivatives can be obtained from the 
self-similar profiles. However, the problem with this formula­
tion is that Eq. (10) cannot be used directly to obtain the 
partial derivative onlaR because anlaH is a function of dH I dR in addition to Hand R. More precisely, Eq. (10) gives the 
correct value of an/aH for the limiting case dH/dR =0, 
which is of no practical utility. 

The preceding argument shows that, to make an envelope 
method and Stock and Degenhart's method entirely equiva­
lent, it would be necessary to construct a database utilizing the 
self-similar profiles from which the function an/aH(R, H, dH /dR) could be splined. This effort seems at least equivalent 
to that required to develop Stock and Degenhart's' method 
itself. Since the construction of the database for an envelope 
method relies on the explicit knowledge of dR Ids, however, it 
would still not be extendable to arbitrary families of profiles 
such as the one that will be discussed later for separated 
boundary layers. 

To demonstrate the differences between the methods of 
Refs. 7 and 8, it is helpful to envision a boundary-layer devel­
opment made up of two constant-Hu lengths with a discontin­
uous jump in between. Figure I shows the neutral curves 
corresponding to the two values of shape factor. It is desired 
to compare the growth of n obtained by following the develop­
ment through the jump in H'2 at constant frequency to that 
obtained using Eq. (11). Figure 2 shows the amplification 
curves for the three reduced frequencies shown on the neutral 
curves plot as calculated by Eq. (7) together with the envelopes 
given by Eq. (10) for the two values of H". Figure 3 shows the 
n-growth along the boundary layer with the switch in shape 
factor occurring at R"" = 500. 

The three frequencies selected represent limiting cases that 
serve best to elucidate the argument. As seen in Fig. 3, as R~ 
increases, N(F1) grows according to Fig. 2 up to the maximum 
and. just as it is ready to start decaying, the jump in HI2 forces 
further amplification until the upper branch of the neutral 
curve corresponding to H12 = 2.67 is crossed. This additional 
growth will not necessarily be steeper than the envelope. N(Fz) 
does not start to become amplified until the switch occurs. at 
which point it grows quite steeply in accordance with the 
greater area under the amplification rate surface - a;(Rb,.' 
2.67, w). This curve does not necessarily exceed the envelope. 
Starting with the F3 curve, at all lower frequencies the growths 
of N will follow the H" = 2.67 envelope, which is parallel to 
but greater than that given by Eq. (11). 

In this example, it is possible to recover the steep similarity 
growth given by Eq. (10), since the shape factor is held con­
stant downstream of the switch. In a nonsimilar development, 
however. the variation of H'2 is continuous. If a monotoni­
cally increasing shape factor is approximated by a series of 
infinitesimally small steps. the resulting growth of n will never 
be able to "catch up" with the value obtained from a self-sim­
ilar profile at the same local shape factor and Reynolds num­
ber. The correct envelope obtained by following each fre­
quency, therefore. will lie above the approximation ofEq. (11) 
without ever reaching the growth given by Eq. (10). The 
converse is true for an accelerating' boundary layer. 

Based on the preceding argument. these two envelope meth­
ods may be expected to overpredict the transition location for 
nonsimilar. decelerating flows and to underpredict it for non­
similar, accelerating flows. 

Stock and Degenhart's Approximate Method 
Stock and Degenhart's8 construction of the database allows 

the tracking of individual frequencies. thus leading to a more 
accurate calculation of the growth of n than afforded by the 
envelope methods. When used in conjunction with an integral 
boundary-layer method, use of the local shape factor as cou­
pling parameter introduces an error of at most 1 n unit at any 
point along its growth as compared to the growth calculated 
with the SALLY' code. As discussed in Ref. 8, this error arises 
from the inability of H'2 to capture the details of the velocity 
profile near the wall, particularly the second derivative, which 
has a great impact on stability calculations. If used in conjunc­
tion with a finite-difference methOd, on the other hand, an 
ingenious weighting of the shape factor with the local wall 
shear stress leads to a more physically meaningful coupling 
parameter. Since this new shape factor is a unique function of 
HI2 that is easily determinable for the Falkner-Skan profiles, 
the same database can be utilized but with much greater accu­
racy. In fact. the growth of n becomes indistinguishable from 
that obtained with the SALLY code. 

Profiles for Separated Flow 
To extend the preceding theory to the prediction of transi­

tion in laminar separation bubbles, as was done in Ref. 7, it 
seems natural to employ the same family of profiles beyond 
separation as is used upstream of it, namely. the reversed 
Falkner-Skan, or Stewartson, profiles. As pointed out in Ref. 
10, however, LDA measurements indicate that the Stewartson 
profiles do not reflect the actual velocity distribution in the 
laminar part of the bubble; rather, the measured flowfield is 
matched much better by the two-parameter profile family 
originally developed by Green l ' for a turbulent shear layer 
forming a free stagnation point downstream of a base. As 
shown in Fig. 4, the two parameters are linked to the geomet­
rical characteristics of the profiles. The ratio (h/b) is the 
distance of the shear layer from the centerline of the wake, 
and therefore from the wall, to the width of the shear layer. G 
is the amplitude of Coles's wake function. Since there is Slip 
along the centerline, these profiles cannot be utilized to de­
velop a relationship for c/. This shortcoming can be remedied 
by the skin friction correlation developed in Ref. 12 in which 



DlNI. SELIG. AND MAUGHMER: SEPARATED BOUNDARY LAYERS 1957 

a finite difference calculation of the bubble nowfield has led 
to very similar profiles. The skin friction coefficient obtained 
from this correlation is smaller than that from the Falkner­
Skan profiles. as expected. 

To be able to use the Green profiles, it is necessary to know 
how the two parameters vary inside a bubble. The measure­
ments of Ref. IO indicate that the amount of back flow is small 
« 15070 of the boundary-layer edge velocity); this is confirmed 
by a modellhat has been developed based on the work of Ref. 
9. In this model the amount of pressure recovered in the 
laminar part of the bubble and the angle the dividing stream­
line makes with the airfoil surface at separation have been 
found to correlate well with the Gaster's pressure gradient 
parameter l ) and the Reynolds number based on momentum 
thickness at laminar separation. Knowledge of these parame­
ters allows an accurate approximation of the pressure distribu­
tion in the laminar part of the bubble and of the location of 
the dividing streamline. Based on flow visualization and an 
analytical solution of the Navier-Stokes equations near the 
laminar separation point discussed in Ref. 14, the dividing 
streamline, in fact, is assumed to be a straight line oriented at 
the separation angle relative to the surface. After careful 
study, it was concluded that airfoil curvature has little or no 
effect on the so-called short or weakly interacting bubble, even 
near the leading edge. Remaining entirely within the approxi­
mations of conventional boundary-layer theory, therefore. 
there is sufficient information to correctly define the details of 
the flowfield in the laminar part of the bubble. 

The simple geometrical definition of the Green profiles, 
given in Fig. 4, allows the definitions for lhl band 0)1 b to be 
expressed explicitly in terms of the two parameters hi band G. 
These relationships can be used as constraints to solve for two 
of the three variables h, b, and G. By forcing the net flow 
between the wall and the dividing streamline to equal zero, a 
third independent equation is obtained from which h can be 
determined. In this way the flow field in the laminar part of the 
bubble is calculated in a manner that is consistent with conser­
vation of mass, momentum. and energy. 
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Without further discussion of the bubble model itself, 
which will appear in a separate paper. the laminar separated 
boundary layer has thus been approximated by a family of 
profiles that appears more suitable than Falkner-Skan. More 
importantly, the new family is general enough to allow the 
approximation of a wide range of flow behavior. and the 
present configuration can easily be improved as new measure­
ments and insights become available (e.g., regarding the be­
havior of long or burst bubbles). The stability database, by 
contrast, already encompasses all physically plausible combi­
nations of hlb and G values, and therefore will not have to be 
recomputed. 

Database 
As a starting point in the construction of the database, the 

method of Stock and Degenhart8 has been reproduced with 
some slight modifications. The 02 is used in place of 01 as the 
characteristic thickness. Rather than storing and splining the 
results of Eq. (8), the dimensionless amplification rates them­
selves are stored and splined as functions of R",-, H I2 , and F. 
This decreases the time needed to evaluate - Q;, which is 
ultimately the quantity needed in the integral for N. The 
determination of the amplification rate is carried beyond the 
crossing of the fixed reduced-frequency rays with the upper 
branch of the neutral curves. This is done in order to capture 
the relaminarization of the transitioning boundary layer that 
may occur, for instance, if the pressure gradient suddenly 
becomes very favorable downstream of the critical Reynolds 
number. The value ofN is calculated along with Ct.; by means 
of Eq:...J8), and the calculations along each ray are stopped 
when N = O. As is done in Ref. 8, in order to facilitate the 
splining of - Ct.; it is best if this function. as well as the 
independent variables, is normalized. This is done to ensure 
that the independent variables will be defined on a Cartesian 
grid. Figure 5 shows a set of normalized curves of Ct.i(R~, F) 
for one value of H". In this figure, (R.,)mi", (R.,)~. and 
( - Q; )max are functions of F. In general, they are functions of 
F and H 12. Eighteen different values of HI2 are used between 
stagnation and laminar separation. Splining the stability char­
acteristics of the Green profiles involves increasing the space 
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Fig. 9 Upper-surface shape faclor development and comparison of 
upper-surface n developments for test airfoil. 

of the independent variables by one dimension, corresponding 
to the additional parameter needed to define them. 

The calculation of the stability characteristics of the Green 
profiles presents a problem in that these profiles have two 
discontinuities in curvature at the upper and lower edges of the 
shear layer. where the curvature abruptly goes from a max:i· 
mum, given by the cosine function, to zero. This prevents the 
Orr-Sommerfeld equation from converging. As an approxi­
mation to the Green profiles, therefore, the hyperbolic tangent 
profile is utilized. This profile is more conveniently defined by 
means of two parameters slightly different from hlh and O. 
such that 

u I - G, I + G, h(' Y -h') 
-~--+--tan y --
U 2 2 b, 

(20) 

where Ot is the amount of backflow referenced to the edge 
velocity, hi is the distance from the wall to the center of the 
shear layer, and h, is the half-width of the shear layer. These 
parameters are related to the previous ones by 

h, h 
-~2-+1 
b, b 

(21) 

G, ~ II - 2GI (22) 

where the absolute-value sign is used for convenience. In Eq. 
(20), y' is defined as 

• _ h-,[G, - I + 2U.] 
y - tan G, + I (23) 

Unlike the Green profiles, the hyperbolic tangent profile ap· 
proaches the value of 1 asymptotically. Ut in Eq. (23), there­
fore, is needed to specify the value of the velocity at the edge 
of the shear layer. Rather than prescribing an arbitrary value 
such as 0.99, for instance, Ut is subordinated to the coupling 
criteria that best match the stability characteristics of the two 
profiles: the amount of back flow and the slope of the shear 
layer at its center. 

Given h/b from a knowledge of the bubble geometry, as 
discussed above, and H32 at each point in the boundary layer. 
the value G(hlb, H,,) is calculated from the definition of H12 
for these profiles. 9 To ensure that these values correspond to 
a hyperbolic tangent profile having the same stability charac­
teristics, the database is constructed in such a way that the 
slopes of two profiles with the same values of G and hi b are 
always equal in the center of the shear layer. This is achieved 
by equating the slope of a Green profile in the center of the 
shear layer, 

(U)' (h) - - Gr - + 1 
U ,-h+blZ - b 

(24) 

to the corresponding expression derived from Eq. (20). Solv­
ing for Ut , 

(25) 

~ 0.958576 - 0.041424G, 

Thus, it is noted that Ut is only a function of G and is 
independent of hlb. Substitution of Eq, (25) into Eq. (23) 
yields the simple result y' ~ (r/2). 

The locus of (h1/b{J Gr) pairs used to generate the database 
is shown in Fig. 6. The limits on the range of hr/h, are set by 
geometrical considerations. The lower limit corresponds to the 
laminar separation condition, when the shear layer touches the 
wall, whereas the upper limit represents a distance of the shear 
layer from the wall not likely to be exceeded even in the 
thickest bubbles. The limits on the range of Gr, on the other 
hand, are set by the lowest and highest values that the shape 
factor H32 can achieve in a bubble: the laminar separation 
value, 1.515095. and 2.0, which is above most measurements. 
Within these limits a Cartesian grid has been laid, the intersec­
tions of which represent different amplification surfaces, 
exi(R~, w). If unusual and extreme conditions in a bubble were 
to exceed these limits, the spline evaluating routines automati­
caIly extrapolate. thereby avoiding program failure. The point 
corresponding to laminar separation can be recognized in the 
figure as the pair (ht/hr = 1.0, Gr = 0.025). Figure 7 shows a 
comparison of the Falkner-Skan separation profile and its 
curvature distribution with its corresponding Green and hy­
perbolic tangent profiles. It can be seen how the hyperbolic 
tangent profile provides a smoother transition between the 
two families than do the Green profiles. From the point of 
view of integral boundary-layer calculations, in any case. the 
Green and hyperbolic tangent profiles are equivalent and 
shape factor and dissipation coefficient correlations could be 
used from either family without a noticeable difference in the 
results. 

Each amplification rate surface is traversed by 12 constant 
reduced-frequency sweeps, distributed between the maximum 
frequency, just tangent to the neutral curve. and the minimum 
frequency, defined as the frequency along which NffW( = 80, 
according to the rule 

Along each frequency, the amplification rate ex; is evaluated at 
51 equally spaced points between (R6:2)min, at the intersection 
of the frequency ray with the lower branch of the neutral 
curve, and (R~)mu. th~oint beyond the upper branch corre­
sponding to the value N = O. In this way, the Reynolds num­
ber normalized between these limits has the same values for all 
the sweeps and all the parameter values. The presplining is 
performed for each frequency ray only along the direction of 
R6:2' The boundary-layer program uses an evaluating subrou­
tine that fits cubic polynomials in the remaining directions to 
obtain the desired a,(R." H",fl or a,(R." hlb, G, fl. 

Practical Example 
The test case discussed above can be examined in a more 

realistic setting by means of the airfoil design program pre­
sented in Ref. IS, as an arbitrary shape-factor distribution can 
be prescribed directly in this method. Once an airfoil that 
satisfies the somewhat artificial constraints given earlier has 
been obtained, the chord Reynolds number can be searched 
such that the step in shape factor occurs at the desired value of 
Ra,. = 500. Figure 8 shows an airfoil that meets these require­
ments at R = 1.2 x 1()6 together with its inviscid pressure dis­
tribution. The boundary-layer development is driven by this 
inviscid distribution and the calculations are stopped at the 
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end of the rooftop, or the second constant-HIl segment. Along 
the surface of the airfoil the actual n developments themselves 
are shown, plotted in units of percent chord above corre­
sponding y coordinates. The solid line represents the envelope 
of 20 frequencies calculated by the present method, while the 
dotted-dashed line is calculated by means of the method of 
Ref. 7. Figure 9 shows the shape factor distribution actually 
achieved together with the predicted n developments, this time 
comparing the prediction of Ref. 7 to all 20 frequencies. It 
should be pointed out that pan of the difference between the 
twO methods is due to a mismatch in critical Reynolds num­
ber. In Ref. 7, the critical Reynolds number is calculated 
according to a curve-fit whose accuracy decreases in favorable 
gradients. Even if this minor and conceptually unimportant 
problem were eliminated, such that along the first constant­
HI2 segment the two methods coincided. downstream of the 
switch there would still be a noticeable difference. 

Comparisons witb Measurements 
The accuracy of the present method for attached boundary 

layers is discussed at length in Ref. 8. In this paper, therefore. 
comparisons are made with measurements of transition loca­
tions inside laminar separation bubbles, as well as with the 
corresponding predictions obtained with the envelope method 
of Ref. 7. To make these comparisons more meaningful, it is 
necessary to discuss briefly how the boundary-layer develop­
ment is caJculated. 

Although the present method can be used in a variety of 
viscous analysis methods for incompressible airfoil flows, it 
was developed with the purpose of incorporating it into the 
airfoil design and analysis program of Eppler and Somers. 16 

In fact, the laminar separation bubble model discussed in 
Ref. 9 has been included in this program and is currently used 
in conjunction with the present transition prediction method 
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for routine analyses during the airfoil design process. The 
program of Eppler and Somers employs a conformal mapping 
method that allows mUltipoint design by specifying different 
characteristics of the velocity distribution over different seg­
ments of the airfoil. The exact inviscid distribution thus ob­
tainable is then analyzed by means of an integral boundary­
layer method utilizing the momentum and energy integral 
equations. Although a single displacement thickness iteration 
can be prescribed for calculating the zero-lift angle of attack 
more accurately, this option is seldom used. In fact, assuming 
that the boundary layer and outer flows are interacting weakly 
yields very accurate drag polars for an extremely small compu­
tational cost. The fact that at a particular angle of attack the 
inviscid and experimental pressure distributions do not match 
is of no consequence since airfoils are designed by specifying 
desired characteristics at particular lift coefficients and are 
compared by means of drag polars. Near maximum lift, of 
course, the viscous/inviscid interaction is not weak, but this 
program utiHzes an approximation for the effects of turbulent 
separation that, given enough experience on the part of the 
designer, has led to a number of very successful airfoils that 
have been operating on gliders, general aviation aircraft, bus­
iness-class turboprops, wind turbines, marine propellers, and 
model airplanes for over three decades. 17 

The laminar separation bubble model of Ref. 9 and the 
transition prediction method discussed in this paper were de­
veloped to improve the drag prediction accuracy of the Eppler 
and Somers program for chord Reynolds numbers smaller 
than 2 x 1()6. The laminar separation bubble model is based on 
the assumption that the strong interaction is limited to the 
immediate vicinity of the bubble. This allows the utilization of 
the inviscid velocity distribution everywhere else. thus keeping 
computational requirements within bounds to be useful for 
airfoil design. As discussed in detail in Ref. 9, the bubble 
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model relies on an approximation to the pressure distribution 
in the laminar part of the bubble that has been successfully 
correlated to many measured pressure distributions on differ­
ent airfoils at different Reynolds numbers. This allows the 
calculation of the boundary-layer development in the laminar 
part of the bubble in the direct mode and without making 
recourse to an interaction algorithm. The turhulent part is 
calculated by prescribing a distribution of H12 and solving the 
momentum and energy integral equations in the inverse mode. 
The transition location can be recognized by the sharp corneT 
in the bubble pressure distribution. Although transition ini­
tiates upstream of this corner and occurs over a small but 
finite region of the airfoil, in the present method it is assumed 
to occur at a point. 

In order to compare the methods discussed earlier exhaus­
tively, it is necessary to present four separate predictions for 
all the cases shown in the following figures. A different line 
type is shown in the plots to depict the amplification factor 
growth along the airfoil surface as calculated by each different 
method. The same line type is also used to indicate the corre­
sponding bubble pressure distribution. For all these cases the 
inviscid pressure distribution is used to drive the boundary 
layer upstream and downstream of the bubble. A solid line is 
used for the present method utilizing the Green profiles. For 
the sake of completeness, the present method has also been 
applied to the reversed Falkner-Skan profiles, and the corre­
sponding curves are shown by a dashed line. This allows the 
comparison between the method of Ref. 7 and the present 
method also inside the bubble and with the same family of 
profiles. The solid and dashed curves represent the numeri­
caliy calculated envelopes of twenty frequencies calculated 
individually in each case. The envelope method of Ref. 7 is 
shown in a dotted-dashed line. This method has been found to 
contain some additional errors due to inaccurate curve fitting 
of Eq. (10) for very high values of H 12 • A corrected version has 
been kindly provided and is shown here as a dotted line. 

Figure 10 shows a comparison with data taken from the 
NASA NLF(I)-1015 airfoil at R ~ 500,000 (Ref. IS). The 
bubble model used in conjunction with the present transition 
prediction method is invoked when laminar separation is en~ 
countered by the boundary layer as driven by the inviscid 
velocity distribution. The asterisks denote the laminar separa­
tion and the turbulent reattachment points. It can be seen how 
the presence of the bubble modifies to some extent the upper­
surface in viscid pressure distribution upstream of laminar sep­
aration. Therefore, some error in the predicted transition loca­
tion should be ascribed to the different impact these two 
distributions have on the growth of n. This airfoil poses an 
additional challenge in that it is markedly aft loaded, leading 
to greater discrepancies between the inviscid and the measured 
pressure distributions as the trailing edge is approached. 
Whereas the upper-surface bubble as calculated with the pre­
sent method is of the right length, the transition location in the 
lower surface bubble is underpredicted. Rather than a short­
coming of the transition method, the disagreement is due to 
the difference between the experimental pressure gradient, 
softened by the strong trailing-edge interaction, and the invis­
cid one, which drives the bubble model. 

The dotted-dashed line in Fig. 10 corresponds to the envel­
ope method of Ref. 7. Before laminar separation, the two 
methods are almost identical. Since this has been observed for 
all the airfoils analyzed, it can be said that the shape factor 
distributions characteristic of most airfoil flows are smooth 
enough to warrant the approximation implied by Eq. (11) and, 
therefore, that the envelope method of Ref. 7 is sufficiently 
accurate before laminar separation. However, as shown by the 
difference between the present method applied to the reversed 
Falkner-Skan profiles (dashed line) and the envelope method, 
the steep growth of shape factor inside the bubble leads to a 
significant error in the calculation of n by the latter. A more 
significant example of this effect is given by the new, corrected 
envelope method shown as the dotted line. These comparisons 

confirm the error trend due to the nonsimilar development 
discussed earlier for the test case. 

As a second example, Fig. 11 shows a comparison with the 
experimental pressure distribution of the Eppler E387 airfoil 
at a chord Reynolds number of lOO.()(x) and a = - 1 deg (Ref. 
19). This angle was chosen in order to match the measured 
upper-surface pressure distribution as closely as possible. The 
same trends are observed again here. with the curve-fitting 
errors of the original envelope method (dotted-dashed line) 
becoming drastically apparent. Indeed, this example shows 
why such large values of ncot are necessary to match measured 
bubble lengths when the original envelope method is used at 
very low Reynolds numbers.20 All four curves coincide for the 
lower surface boundary-layer development, which is all at­
tached. Thus far, it appears that the Falkner-Skan profiles. if 
used properly, can achieve a reasonably accurate approxima­
tion of the flow field. However, Fig. 12 shows that this is not 
the case. For the same airfoil at the same Reynolds number 
but at 0: = 6 deg, the present method with the Green profiles is 
more accurate than the others. Fortuitously, the original en­
velope method is more accurate in this case because of the 
same curve· fitting problem discussed above. Last. Fig. 13 
shows a comparison with the pressure distribution of the 
Wortmann FX63-137 airfoil at R ~ 100,000 and ,,~4.S deg 
(Ref. 21). Although for the previous airfoils the exact inviscid 
velocity distribution is generated simultaneously with the co­
ordinates by the conformal mapping method used by the 
Eppler and Somers program, in this case it is obtained by 
means of a higher.order panel method also employed by the 
program. 16 The upper-surface bubble is predicted well by the 
present method as well as by the Falkner-Skan profiles, 
whereas the original envelope method leads to an underpredic­
tion. The same effect. but more drastic, is observed in the 
lower·surface bubble, which extends to the trailing edge. 

From the preceding comparisons, it appears that the highly 
nonsimilar flow inside the bubble leads to unacceptable errors 
when the envelope method. even the corrected one, is used. 
The Falkner~Skan profiles used in conjunction with the pre­
sent method, on the other hand, give reasonably accurate 
results in five out of the six bubbles examined. The present 
method with the Green profiles. however, gives the best and 
most consistent transition prediction accuracy. These results 
also serve to show how the very large values of ncril' on the 
order of 20, reported in Ref. 20 are not due to low-Reynolds­
number or freestream turbulence effects but, rather, to a 
curve-fitting error present in the original envelope method. In 
all of these comparisons ncrit = 11 was used. The present 
method with the Green profiles has been used with the same 
value of ncrit also at Reynolds numbers higher than those 
shown here, with the same degree of accuracy in the results. 

Conclusions 
Although the present method of transition prediction has 

been shown to be more accurate than envelope methods for 
nonsimilar boundary-layer developments, shape factor distri­
butions typically found on airfoils are smooth enough for 
envelope methods to remain sufficiently accurate for attached 
boundary layers. The present transition prediction method is 
still necessary for separated flows, however, as the shape 
factor growth is too steep for any assumption of local similar­
ity to hold. In addition, envelope methods cannot be applied 
to an arbitrarily defined family of profiles such as the Green 
profiles, which approximate the now field in the laminar part 
of the bubble more accurately than the Falkner-Skan family. 
The new database developed for attached and separated 
boundary layers is very general and can be used in conjunction 
with any two-dimensional airfoil viscous analysis method. 
Specification of the correct flowfield geometry in the laminar 
part of the bubble has led to accurate predictions of bubble 
lengths with the same value of critical amplification factor for 
all Reynolds numbers at which bubbles occur. 
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