
AIAA 2003–0043
AIRFOIL DESIGN USING A GENETIC
ALGORITHM AND AN INVERSE
METHOD
B. Allen Gardner and Michael S. Selig
Department of Aeronautical and Astronautical Engineering
University of Illinois at Urbana–Champaign
Urbana, Illinois 61801

41st Aerospace Sciences Meeting and Exhibit
6–9 January 2003

Reno, Nevada

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Suite 500, Reston, VA 20191–4344

41st Aerospace Sciences Meeting and Exhibit
6-9 January 2003, Reno, Nevada

AIAA 2003-43

Copyright © 2003 by B. Allen Gardner and Michael S. Selig. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



Airfoil Design Using a Genetic Algorithm and
an Inverse Method

B. Allen Gardner∗ and Michael S. Selig†

Department of Aeronautical and Astronautical Engineering
University of Illinois at Urbana–Champaign

Urbana, Illinois 61801

Abstract
In this paper, optimal airfoil shapes are found

through manipulation of the velocity distribution by
a genetic algorithm. The airfoil geometries are gener-
ated by an inverse method from velocity distribution
parameters, and a viscous-flow analysis code is used to
determine proper fitness values for candidate airfoils
based on preset performance criteria. The method is
compared with the more traditional approach of direct
geometry manipulation for a simple single-objective
aerodynamic optimization problem for a symmetric
airfoil. The inverse and direct approaches are com-
pared using a simple genetic algorithm and a hybrid
genetic algorithm, where the hybrid method is formed
by combining a simple genetic algorithm and a special-
ized local search method. Finally, the method is used
to design a cambered airfoil that outperforms the ex-
isting state-of-the-art. Results indicate that using the
design variables defining the velocity distribution in
the inverse method has great potential for increasing
the efficiency of airfoil shape optimization using ge-
netic algorithms.

Introduction
In the past, several researchers have developed op-

timization methods that directly adjust airfoil shapes
by way of spline supports, orthogonal shape functions,
linear combinations of known airfoils, or geometry per-
turbations of an airfoil that is known to be close to an
optimum. These direct-design approaches have been
used within a wide range of optimization algorithms
including classical methods1,2 and genetic algorithms
(GAs).3–6

In their GA-based optimization method, Holst and
Pulliam3 used the PARSEC7 method to parameter-
ize airfoil geometries using 10 control variables that
represent typical geometry characteristics. Using this
method, broad geometry constraints can be met by

∗Graduate Research Assistant, 306 Talbot Laboratory. Stu-
dent Member AIAA. bagardne@uiuc.edu

†Associate Professor, 306 Talbot Laboratory. Senior Member
AIAA. m-selig@uiuc.edu

Copyright (c) 2003 by B. Allen Gardner and Michael S.
Selig. Published by the American Institute of Aeronautics and
Astronautics, Inc., with permission.

simply fixing a single control variable. By employ-
ing only 10 variables, however, the method searches a
small design space compared with most other direct-
design approaches. Thus, these 10 geometry controls
are not sufficient to describe all possible airfoil shapes
including unconventional designs.

Fanjoy and Crossley4 developed a method to opti-
mize airfoil shapes by using 21 design variables rep-
resenting the control points of a B-spline. They
found that this method could be used to represent
nearly any arbitrary shape. The B-spline, however,
produced airfoils with small surface “waves” between
control points. Unfortunately, this “waviness” is
reflected in the velocity distribution. Viccini and
Quagliarella5 also investigated a GA-based airfoil op-
timization scheme using B-splines, and concluded that
unlike a gradient-based approach increasing the num-
ber of control variables used in their GA did not im-
pose a proportional computational cost. They also
found that a classical, conjugate gradient method was
able to solve their airfoil optimization problem with
about 1/5 of number of flow-solver solutions required
by their best GA so long as a suitable starting point
was chosen.

A problem with these direct-design approaches is
that the relationship between geometry and perfor-
mance is highly nonlinear. That is, a small change
in the surface shape of an airfoil can cause ripples
in the velocity distribution, greatly degrading perfor-
mance. Because of this phenomenon, there has been
interest in perturbing the geometry in such away as
to produce reasonable velocity distributions with each
perturbation. A way to bypass this is by using an in-
verse method to parameterize the airfoil. An inverse
method allows the velocity distribution to be directly
controlled rather than anticipated from geometry per-
turbations. Concerns about using the inverse method
have been expressed in the past because of the risk of
defining a velocity distribution that cannot be phys-
ically achievable.8 This situation, however, can be
partially avoided by using iteration schemes in the in-
verse method.

The inherent robustness of GAs has made them in-
creasingly popular in engineering applications. GAs
are capable of searching for optimal solutions within a

1 of 12

American Institute of Aeronautics and Astronautics Paper 2003–0043



highly nonlinear and discontinuous design space since
they do not require sensitivity computations (deriva-
tives). They rely only on information concerning pay-
off and do not breakdown when other information is
not available. Because GAs work from a population
rather than a single point, they are less likely to be-
come focused on a local optimum. Considering these
characteristics, GAs are much more robust than tra-
ditional optimization techniques. Of course, GAs do
have drawbacks. There is no guarantee that they
will converge on the best possible design. Instead,
the purpose of a GA is to improve on an existing
design.9 Also, for relatively smooth design spaces,
GAs may require many more iterations than tradi-
tional optimization techniques and are therefore more
computationally expensive. However, with increas-
ing computation speeds and more efficient design and
analysis algorithms, coupling a GA with an inverse
method is an attractive approach that should be ex-
plored.

This paper presents an airfoil shape optimization
method that uses an inverse method for shape gener-
ation and a genetic algorithm for optimization. The
GA operates on design variables that define the airfoil
in the inverse method implemented in the code PRO-
FOIL.11,12 Collectively, the new optimization code
is named ProfoilGA. A Newton iteration scheme is
built into the inverse method to impose geometry con-
straints that aid in reducing the design space and
thereby improves the efficiency of the optimization
method. Furthermore, the Newton iteration scheme
reduces the possibility that the GA will specify val-
ues for velocity distributions that generate nonphysical
geometries, a common but solvable problem for tradi-
tional inverse design.

In the remainder of this paper, the primary tools
used in ProfoilGA are explained, and the general flow
is described. The inverse-design/GA method is com-
pared with a direct-design/GA method named here
BezierGA. The best versions of the two methods are
compared for different GA and hybridization parame-
ters. These comparisons are based on the optimization
of a 10% thick symmetric airfoil for minimum drag
at a lift coefficient of 0.92 and a Reynolds number of
300,000. Following the comparison, results are shown
for an optimized cambered airfoil with the same con-
straints. The performance of the optimized cambered
airfoil is compared to an existing airfoil that was de-
signed for the same conditions.

ProfoilGA
The ProfoilGA method incorporates three primary

tools: a genetic algorithm, an inverse-method air-
foil design code PROFOIL,11,12 and a coupled invis-
cid/viscous flow solver XFOIL.13 The general interac-
tion between these tools can be seen in the flowchart in
Fig. 1. A more detailed description of the tools follows.

Start Stop

GA creates a
random population

from α* and ν
values.

GA sets α* and ν
values for a new

individual.

PROFOIL transforms
the α* and ν values

into a velocity
distribution

PROFOIL iterates the α* and
ν values if necessary to meet
certain geometry constraints

PROFOIL generates an airfoil
geometry from the velocity

distribution

Does airfoil
meet all

constraints?

GA creates a
new generation

from old
generation Is this

the final
generation?

Is this the last
individual in the

generation?

Airfoil geometry is
analyzed with XFOIL.

Did XFOIL
Converge?

Fitness of the
individual
is set to a

small value.

Fitness of the
individual is set
to a value based

on the XFOIL
solution.

No

Yes

No
No

Yes

No

Yes

Yes

Fig. 1 ProfoilGA flowchart.

Genetic Algorithm

The GA is the mechanism in ProfoilGA that defines
candidate airfoils and searches for the best. It works
on binary strings that represent values for the design
variables used in PROFOIL. These binary strings are
converted to real number values for the design vari-
ables that PROFOIL then uses to generate the actual
geometries. Each geometry is assigned a fitness value
by XFOIL based on performance. The GA uses the
fitness value of each airfoil geometry (which it knows
as binary strings) to create the next generation of can-
didate airfoils (binary strings).

The GA implemented in this research was adapted
from the GA driver originally created by Carroll.10

Tournament selection with a shuffling technique for
choosing random pairs for mating is used as the se-
lection scheme. Tournament selection was chosen, in
part, for its ability to handle constraints. Each design
variable is specified by a minimum value, maximum
value, and number of possible values and is coded in bi-
nary using a linear interpolation between the minimum
and maximum value. The method includes options for
niching, jump mutation, creep mutation and elitism.
The number of offspring per pair of parents can be
specified and a micro-GA operation is available. The
nuances and details pertaining to genetic algorithms
and their implementation go beyond the scope of this
paper and can be found in the literature, e.g. see Ref 9.

2 of 12

American Institute of Aeronautics and Astronautics Paper 2003–0043



PROFOIL

The role of PROFOIL11,12 in ProfoilGA is to gen-
erate candidate airfoils based on values specified by
the GA. As mentioned, PROFOIL is an inverse air-
foil design method that allows one to prescribed the
velocity distribution from which the airfoil shape is
determined. Fundamentally, the method is based in
part on the work of Eppler.14,15 Figure 2 shows the
basic conceptual process by which an airfoil shape can
be generated in PROFOIL. The velocity distribution
(Fig. 2b) is directly controlled through a piecewise
curve of the function α∗(φ). Usually the values of
φ are mapped into ν where ν ranges from 0 to 60
points instead of 0 to 360 deg as is the case for φ.
Figure 2a shows an example α∗(ν) curve. The circles
in Fig. 2a represent possible design variables that can
be used to define the conformal mapping curve. The
geometry of an airfoil (Fig. 2c) can be quickly calcu-
lated once the velocity distribution has been set by
these design variables. Through a Newton iteration
on the velocity distribution and its related parame-
ters, PROFOIL also permits specification of laminar
and turbulent boundary layer developments as well as
geometric constraints.

ν

α*
(d

eg
)

0102030
-10

0

10

20

30

a)

V
/V

in
f

0 0.2 0.4 0.6 0.8 1
0

0.25

0.5

0.75

1

1.25

1.5

b)
0 0.2 0.4 0.6 0.8 1

-0.05
0.05

c)

Fig. 2 Airfoil design process using PROFOIL: (a)
conformal mapping function, (b) resultant velocity
distribution, and (c) corresponding geometry.

The α∗ function can affect the airfoil performance
greatly hence it can be used to control airfoil perfor-
mance as well as physical geometry. For these reasons,
the basic purpose of ProfoilGA can be simply stated
as follows. To investigate many different α∗ curves
until an optimum is found. The ProfoilGA method
is quite general in that design variables used in the
optimization process can be assigned for iteration ei-
ther by the Newton scheme in PROFOIL or by the
GA. For instance, the lower surface of an airfoil can
be prescribed to have a certain boundary layer devel-
opment that is achieved by the inverse method, while
the upper surface is left free for iteration by the GA
to achieve low drag at a given design point.

XFOIL

XFOIL13 is a design and analysis method for single-
element subcritical airfoils. A linear-vorticity second-
order accurate panel method is used in the invis-
cid flow. This method is coupled with an integral
boundary-layer method and an en-type transition am-
plification formulation using a global Newton method.

An average of less than 2 sec of computation time on
a 1.7-GHz pentirum 4 processor is required to calcu-
late the performance coefficients of an airfoil with 140
coordinates at a single design condition.

XFOIL was chosen for use in ProfoilGA based on
its speed and accuracy. It is very fast compared
with Reynolds-averaged Navier-Stokes (RANS) meth-
ods, and it has been proven to be well suited for the
analysis of subcritical airfoils even at low Reynolds
numbers where laminar separation bubbles are sig-
nificant. Once an airfoil is generated by PROFOIL,
ProfoilGA calls XFOIL to predict the performance of
the airfoil and assign it a fitness value.

BezierGA
The BezierGA method is similar to ProfoilGA only

it uses Bezier curves to parameterize airfoils instead of
PROFOIL. Thus instead of manipulating a conformal
mapping curve, the GA directly manipulates the air-
foil shape. Two Bezier curves are used to parameterize
one surface of a symmetric airfoil as shown in Fig. 3.
The front portion of the airfoil up to maximum thick-
ness is parameterized by a 7th-order Bezier curve. The
aft part of the airfoil is specified by a 6th-order Bezier
curve. The curves are defined by control points (which
dictate the order), seen as circles in Fig. 3. These con-
trol points can be moved vertically and horizontally to
define practically any shape. First- and second-order
continuity are enforced at all curve junctions except
the trailing edge. With these requirements in place,
only smooth, realizable airfoils are produced. Patching
the two curves at the location of maximum thickness
allows the designer to easily constrain the location
and magnitude of maximum thickness. A total of 10
variables are used to manipulate the two curves, very
comparable to similar approaches that can be found in
the literature.

0 0.2 0.4 0.6 0.8 1
-0.05

0

0.05

Fig. 3 Airfoil parameterization (expanded view)
using Bezier curves.

Tuning The Methods
One of the primary objectives of this research, the

first study, was to determine if ProfoilGA could find
optimum airfoils in a shorter amount of time than
direct-design methods like BezierGA. In order to make
such a determination, both methods must be tuned
for optimal performance before they can be compared.
Many tests were performed in order to tune the meth-
ods. First, the GA parameters associated with the

3 of 12

American Institute of Aeronautics and Astronautics Paper 2003–0043



Table 1 ProfoilGA Parameterization Approaches

Case No. ν–α∗ Combinations ν Parameterization α∗ Parameterization (deg)
fixed-1 4 fixed: 22.5 to 30 range: 0 to 30
fixed-2 4 fixed: 22.5 to 30 seq: 0 to 30
fixed-3 10 fixed: 8.5 to 30 range: 0 to 30
seq-1 4 seq: 12.5 to 30 seq: 0 to 30
seq-2 4 seq: 8.5 to 30 seq: 0 to 30
seq-3 6 seq: 8.5 to 30 seq: 0 to 30

simple genetic algorithm (SGA), described previously,
were varied. Second, the SGA was enhanced with a
local search algorithm to form a hybrid-GA. This new
hybrid-GA introduced new variables that also required
tuning.

A simple optimization problem was created in or-
der to measure the success of the tuning. As will be
discussed later, another primary goal of this research,
the second study, was to see if ProfoilGA could find an
airfoil that outperforms the current state-of-the art.
The state-of-the art being a 10% thick cambered air-
foil with a maximum L/D of 104 operating at a lift
coefficient of 0.92 and a Reynolds number of 300,000.
It was assumed that the tuning of the GA parame-
ters could potentially be problem specific; that is, the
optimal settings for one case could be poor settings
for another. The optimization problem used for tun-
ing the methods was chosen based on its similarity to
the cambered-airfoil optimization problem in order to
reduce the amount of tuning needed for ProfoilGA.
The only difference between the test case and the
cambered-airfoil case was that the former was limited
to being a symmetric instead of a cambered airfoil in
order to reduced the amount of time required to per-
form the tests. The constraints and operating points
remained the same. Thus, the objective used in the
tuning tests was: find a 10% thick symmetric airfoil
with minimum drag at a lift coefficient of 0.92 and a
Reynolds number of 300,000.

In order to gauge the success of the algorithms, the
performance of the respective optimized airfoils were
compared to an existing symmetric airfoil. This com-
parison helps to assure that the methods are not sim-
ply tuned with respect to each other, but are optimally
tuned to produce high performance airfoils. Three
candidate sections were considered for use as a compar-
ison in this first study: The NACA-0010, the NACA-
63010a, and the Eppler 168 (Fig. 4). The E168 has a
thickness greater than 12%, so it is expected to oper-
ate better at high lift-coefficients compared with thin-
ner symmetric airfoils. For example, the NACA-0010
(10% thickness) airfoil has a Cd = 0.02571 and the
NACA-63010a (10% thickness) has a Cd = 0.02275.
Both Cd values are significantly higher than the E168
(Cd = 0.01634). Thus, the E168 is used as the primary
basis of comparison because it is a more challeng-

ing competitor. Although this is a single-optimization
problem with relatively few constraints, it is very dif-
ficult owing to the fact that few symmetric airfoils are
capable of operating efficiently at a lift coefficient of
0.92 at the specified Reynolds number. Worth noting
is the fact that the E168 was, most likely, not designed
for these conditions. It is only used here as a compar-
ison.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.05

0

0.05

Fig. 4 Geometry of the E168 airfoil.

The best fully-tuned optimization algorithm can be
determined in two ways. Either it requires less time
than the other algorithm to find an airfoil that is bet-
ter than the E168, or it finds the very best airfoil in
a given amount of time, compared with other algo-
rithms. Since the “bottleneck” to the process is the
time required to analyze an airfoil using XFOIL, the
number of calls to XFOIL is representative of the pro-
cess time.

Simple Genetic Algorithm Comparisons

The parameters of the SGA used in both the Pro-
foilGA and BezierGA methods were tuned for the
specific search spaces. The parameters investigated
included population size, number of variables, range
of variables, niching, creep mutation, and elitism. A
micro-GA operater was also examined. For each case,
the number of generations was limited to 300 while
other GA parameters were varied. Over 200 cases were
examined, representing over 1200 hours of processor
time on a 1.7-GHz PC running Linux.

Since ProfoilGA uses a unique method to parame-
terize airfoils, the trade studies additionally involved
determining the best way to manipulate the conformal
mapping curve of Fig. 2a. After much experimenta-
tion, Table 1 lists the characteristics of six different
parameterization cases that were most successful. The
ν and α∗ parameters were either fixed at constant val-
ues or varied within a sequence or a range. For the
sequence cases, the parameters were required to be
continuously increasing. For example, if the GA were

4 of 12

American Institute of Aeronautics and Astronautics Paper 2003–0043



to choose a value of 10 for the first α∗ parameter,
and the entire sequence was limited to a maximum
of 30, then the second α∗ value would be automati-
cally constrained to a range of 10 to 30. In the range
cases, each parameter could take any value within the
specified range. The range cases, therefore were ca-
pable of creating very distorted α∗(ν) curves; whereas
the sequence cases required the α∗(ν) curve to always
decrease monotonically from the leading edge to the
trailing edge. Most airfoils do not require a α∗(ν)
curve that is distorted, so it was expected that the
sequence approach would be the most effective (case
seq-1). However, studies showed that the range cases
worked best.

Table 2 lists some of the optimal GA parameters
that resulted from tuning the ProfoilGA and BezierGA
methods. When fully tuned, ProfoilGA used only five
design variables. This tuning involves having the GA
manipulate the values of each of four α∗ parameters
from 0 to 30 while keeping the ν parameters constant
at values of 22.5, 24.5, 28.5, and 30.0. The fifth vari-
able specifies geometry information about the cusp
of the trailing edge. A Newton iteration is used in
PROFOIL to iterate the α∗ values until the thickness
constraint of 10% is reached.

Table 2 Summary of ProfoilGA and BezierGA
Optimal Settings

Parameter ProfoilGA BezierGA
No. Variables 5 10
Possible 1024 512
Design Space 1.1× 1015 1.2× 1027

Population Size 50 50
Crossover Uniform Uniform
Elitism Yes Yes
Micro-GA Yes Yes
Niching No No

An interesting result of the studies was that the only
major difference between the optimal settings was the
number of control variables required. ProfoilGA re-
quired half as many control variables as BezierGA.
This resulted in the design space of ProfoilGA being
substantially smaller than that of BezierGA, as shown
in Table 2. This reduction in design space represents
the primary advantage of ProfoilGA over direct-design
codes like BezierGA. This advantage, however, is only
realized since the constant values of ν were determined
by a designer familiar with inverse design techniques.
If a user is not familiar with inverse design, then the
ProfoilGA parameterization approaches fixed-3, seq-
1, seq-2 and seq-3 would be more practical. In these
cases, the number of design variables increases by a
minimum of four and ProfoilGA may no longer outper-
form BezierGA. In fact, the performance of BezierGA
was very comparable to the ProfoilGA cases seq-1 and

seq-2. Moreover, BezierGA was found to be generally
more effective than the ProfoilGA cases fixed-3 and
seq-3.

The GA driver used for both ProfoilGA and
BezierGA was designed to find maximum values.
Thus, in order to minimize drag, the GA was simply
required to maximize negative drag. For the remainder
of the paper, fitness will refer to −Cd at the conditions
specified earlier.

Generation

M
ax

im
um

F
itn

es
s

(-
C

d)

50 100 150 200
-0.016

-0.0155

-0.015

-0.0145

-0.014

BezierGA
ProfoilGA

Fig. 5 Comparison of ProfoilGA case fixed-1 and
BezierGA for different random seed populations.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.05

0

0.05

b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.05

0

0.05

a)

Fig. 6 Optimum airfoils found by (a) ProfoilGA
and (b) BezierGA.

Figure 5 shows results for ProfoilGA (case fixed-1)
and BezierGA using the optimal settings of Table 2
and different randomly generated initial seed popula-
tions. As can be seen in the figure, ProfoilGA outper-
forms BezierGA in nearly all cases. Also, note that
the performance of BezierGA was more sensitive to
the seed population than ProfoilGA. From these re-
sults, it is evident that ProfoilGA is generally more
efficient and reliable than BezierGA. The best airfoils
found by ProfoilGA and BezierGA, respectively, are
shown in Fig. 6. It is interesting to note that the loca-
tion of maximum thickness for both airfoils is nearly

5 of 12

American Institute of Aeronautics and Astronautics Paper 2003–0043



Table 3 Summary of hybrid-GA operators

Parameter Description
khybrid Number representing frequency of local search (i.e., 2 = every other generation)
phybrid Probability that a single individual will be locally searched
phybridparam Probability that a particular variable within an individual will be locally searched
kmax Maximum number of iterations within the local search
mhybrid Represents which individuals in a pop. are chosen for local search (1=random, 2 = best)
iLamarckian Flag to backsubstitute LSA genotype (1 = Lamarckian, 0 = Baldwinian)

the same. In addition, the shape of these airfoils are
nearly identical up to the point of maximum thickness.

Hybrid-GA Comparisons

Most modern genetic algorithms are combined with
a specialized search method.16 To explore this po-
tential, the SGA used in ProfoilGA and BezierGA
was enhanced with a local search algorithm to form
a hybrid-GA. A GA combined with a conjugate gradi-
ent method has been used in airfoil design and shown
to reduce convergence time to a third.6 The ability
of a specialized search method to enhance the perfor-
mance of a GA depends entirely on the structure of
the design space.

A more smooth and linear design space lends itself
to rapid search by most classical optimization meth-
ods. The design spaces searched by ProfoilGA and
BezierGA are both nonlinear and discontinuous. A
smooth variation of a PROFOIL parameter can be
used to get a family of many very similar airfoils, but
when the XFOIL drag of these airfoils is plotted vs
the smoothly varying parameter, the curve is nonlinear
(jagged). The design space of BezierGA is expected to
be even more nonlinear due to the nature of direct-
design methods, as discussed in the introduction. Dis-
continuities arise primarily because XFOIL may not
converge. In addition, since ProfoilGA manipulates
the velocity distribution rather than the airfoil surface,
there are cases when a non-realizable airfoil (e.q., an
airfoil with a crossed trailing edge) is produced caus-
ing a discontinuity in the design space. Thus, it is
expected that ProfoilGA must search a space that has
many more discontinuities than the space searched by
BezierGA. In contrast, it is expected that the design
space that BezierGA searches is more highly nonlinear
than the design space of ProfoilGA, at least where it
is continuous. Since the effectiveness of a hybrid-GA
depends on the design space it is required to search,
determining the relative performance of ProfoilGA and
BezierGA using a hybrid-GA driver is worth investi-
gating.

A hybrid-GA takes advantage of the global search
capabilities of a GA and the efficient local search
capabilities of a traditional “hill-climber” algorithm.
Often these local search algorithms (LSA) are clas-

sical gradient-based methods. A hybrid-GA follows
the same basic process as an SGA; the only difference
being the LSA is used within the GA driver as an
additional GA operator, similar to crossover and mu-
tation. The process by which the LSA is implemented
in a hybrid-GA is as follows. After all of the indi-
viduals within a population have been assigned fitness
values, and before the crossover and mutation oper-
ators are implemented, certain individuals within the
population are chosen for enhancement through local
search. These individuals are used as starting points
in the LSA. The LSA is then allowed to “climb the
nearest hill,” and is stopped when it either converges
or reaches a specified maximum number of iterations.
After the LSA is completed, the individual used as the
starting point is given a new fitness value correspond-
ing to the best solution found by the LSA.

Many factors must be considered when constructing
a hybrid-GA. There is an optimal ratio relating the
time spent performing global search with the GA to
the time spent in local search.19,20 This ratio can be
controlled in four ways: 1) the number of individuals
within a population chosen for enhancement through
the LSA can be limited, 2) instead of using the LSA
every generation, the LSA can be limited to every
n generations, 3) a subset rather than all of the de-
sign variables for a particular individual can be locally
searched, and 4) a maximum number of iterations can
be specified for the LSA. Four hybrid-GA parameters
associated with the four methods to control the global-
local time ratio were introduced in this study: khbyrid,
phybrid, phybridparam, and kmax. Their descriptions
are given in Table 3.

Another concern for a hybrid-GA is determining
which individuals to choose for local search. Two
methods were used in this study: 1) individuals are
chosen at random, and 2) the best fit individual within
a population is chosen. In order to facilitate these
methods, an additional hybrid-GA parameter was cre-
ated for this study: mhybrid. Its description is also
found in Table 3. Note that when only the best in-
dividual in a generation is chosen for local search, i.e.
mybrid = 2, the parameter phybrid is not used. The
value of mhybrid reflects the level of selection pressure.
For a value of mhybrid = 2, the best individual in a

6 of 12

American Institute of Aeronautics and Astronautics Paper 2003–0043



population is chosen for local search, thus represent-
ing an increase in selection pressure. For a value of
mhybrid = 1, individuals are chosen randomly within
the population for local search, the hope being that
diversity is preserved in each population by relaxation
of selection pressure.

Also of importance in a hybrid-GA is whether or not
to replace the individual chosen for local search with
the best solution of the LSA. It was stated earlier that
the fitness value of the individual is replaced with the
LSA solution. This does not mean that the values of
the design variables associated with such a solution
replace those of the chosen individual. Backsubstitut-
ing the genotype (binary representation of the design
variables) of the LSA solution into the population by
replacing the chosen individual is known as Lamarck-
ian learning. Simply changing the fitness value of the
chosen individual to that of the LSA solution is known
as Baldwinian learning. The distinction between Bald-
winian and Lamarckian learning must be considered in
any hybrid-GA.19 Thus, an additional hybrid-GA pa-
rameter was introduced for this study: iLamarckian.
A description of the variable is given in Table 3.

Before these new hybrid-GA parameters could be
tuned, a local search algorithm had to be chosen. In
order to find a good specialized search method for
hybrid-GA use, seven algorithms were examined: five
gradient-based algorithms and two non-gradient algo-
rithms. All gradients were calculated using forward
difference. None of the gradient-based algorithms were
able to effectively find local optima. The most likely
reason being that the gradients could not be accurately
determined due to the nonlinearities and discontinu-
ities in the design spaces of ProfoilGA and BezierGA.
The two non-gradient methods, Nelder-Mead17 and
Powell-Brent,18 were able to successfully locate local
optima. The results of these two methods for different
starting positions within the ProfoilGA design space
are shown in Fig. 7. For all cases, the Nelder-Mead
algorithm was best and, therefore, was chosen as the
specialized search algorithm for the hybrid-GA drivers
of ProfoilGA and BezierGA.

XFOIL Calls

M
ax

im
um

F
itn

es
s

20 40 60 80 100-0.03

-0.025

-0.02

-0.015

-0.01

XFOIL Calls

M
ax

im
um

F
itn

es
s

20 40 60 80 100-0.03

-0.025

-0.02

-0.015

-0.01

XFOIL Calls

M
ax

im
um

F
itn

es
s

20 40 60 80 100-0.03

-0.025

-0.02

-0.015

-0.01

Nelder-Mead
Powell-Brent

Fig. 7 Performance of local-search algorithms in
the ProfoilGA design space.

Tests were performed for the hybrid-GA parameters
listed in Table 3 in order to tune the hybrid-GA. Over
300 cases were examined representing approximately
1800 hours of processor time on a 1.7-GHz machine.
All cases used elitism, micro-GA, and a population

size of 50 individuals through a maximum of 200 gen-
erations. Each case began with the same randomly
generated seed population. Since the first four hybrid-
GA parameters in Table 3 control the ratio between
the global search using the GA and the local search
using the Nelder-Mead algorithm, every case resulted
in a different average number of XFOIL calls per gen-
eration. Thus, the relative performance of each test
case can not be measured with respect to the number
of generations. Instead, the actual number of calls to
XFOIL is used as the measure to gauge performance.

The two operators mhybrid and iLamarckian were
found to have the largest influence on the effective-
ness of the hybrid-GAs. The results of the hybrid-GA
tuning tests, separated into graphs representing con-
stant mhybrid and iLamarckian values, are shown in
Figs. 8 and 9 for ProfoilGA and BezierGA, respec-
tively. These results are displayed in comparison to the
SGA versions of ProfoilGA and BezierGA. It should be
noted that, in order to avoid displaying graphs with be-
wildering amount of data, the y axis in each of these
figures does not simply show the maximum fitness as-
sociated with a particular XFOIL call, it shows the
maximum fitness value found up to that point, i.e.,
the best fitness so far.

The results of the hybrid-GA tuning tests show
that the effectiveness of a hybrid-GA depends greatly
on the choice of operators. Local search improved
BezierGA in all cases where mhybrid = 1 and iLa-
marckian = 0. These values mean that individuals in
the population are chosen for local search based on
a random selection, and the genotype of the LSA so-
lution does not replace the chosen individuals. The
opposite was true for ProfoilGA. The tuning tests in-
dicated that optimal hybrid operators for ProfoilGA
are mhybrid = 2 and iLamarckian = 1. These values
mean that only the best individual within a popula-
tion be chosen for local search, and the genotype of
the LSA solution replace the best individual of each
population.

Overall Comparison

All of the 400+ cases examined for both ProfoilGA
and BezierGA produced airfoils that had lower Cd val-
ues than the comparison E168 airfoil at a Cl of 0.92
and a Reynolds number of 300,000. Figure 10 shows
the overall performance comparison of ProfoilGA and
BezierGA for both the SGA and hybrid-GA drivers.
The hybrid cases displayed in the figure represent the
best solutions from the hybrid-GA tuning tests. These
results show that ProfoilGA is more efficient than
BezierGA in both the original and hybrid forms. In
fact, ProfoilGA beats BezierGA according to both cri-
teria mentioned previously: it finds an airfoil that is
better than the E168 in minimum time and it finds the
best airfoil in a given amount of time. The maximum
fitness values for each algorithm and a comparison of

7 of 12

American Institute of Aeronautics and Astronautics Paper 2003–0043



XFOIL Calls

M
ax

im
um

F
itn

es
s

2000 4000 6000 8000 10000
-0.016

-0.0155

-0.015

-0.0145

-0.014

hybrid Profoil
Profoil

a)

mhybrid = 1
ilamarckian = 0

XFOIL Calls

M
ax

im
um

F
itn

es
s

2000 4000 6000 8000 10000
-0.016

-0.0155

-0.015

-0.0145

-0.014

b)

mhybrid = 2
ilamarckian = 0

XFOIL Calls

M
ax

im
um

F
itn

es
s

2000 4000 6000 8000 10000
-0.016

-0.0155

-0.015

-0.0145

-0.014

c)

mhybrid = 1
ilamarckian = 1

XFOIL Calls

M
ax

im
um

F
itn

es
s

2000 4000 6000 8000 10000
-0.016

-0.0155

-0.015

-0.0145

-0.014

d)

mhybrid = 2
ilamarckian = 1

Fig. 8 Hybridization trade studies using ProfoilGA.

XFOIL Calls

M
ax

im
um

F
itn

es
s

2000 4000 6000 8000 10000
-0.016

-0.0155

-0.015

-0.0145

-0.014

Hybrid Bezier
Bezier

a)

mhybrid = 1
ilamarckian = 0

XFOIL Calls

M
ax

im
um

F
itn

es
s

2000 4000 6000 8000 10000
-0.016

-0.0155

-0.015

-0.0145

-0.014

b)

mhybrid = 2
ilamarckian = 0

XFOIL Calls

M
ax

im
um

F
itn

es
s

2000 4000 6000 8000 10000
-0.016

-0.0155

-0.015

-0.0145

-0.014

c)

mhybrid = 1
ilamarckian = 1

XFOIL Calls

M
ax

im
um

F
itn

es
s

2000 4000 6000 8000 10000
-0.016

-0.0155

-0.015

-0.0145

-0.014

d)

mhybrid = 2
ilamarckian = 1

Fig. 9 Hybridization trades studies using BezierGA.

8 of 12

American Institute of Aeronautics and Astronautics Paper 2003–0043



their results to the E168 airfoil are shown in Table 4.
The performance of the Nelder-Mead algorithm as it
searched the ProfoilGA design space is also shown in
Figure 10 and Table 4 in order to compare the effec-
tiveness of the SGA and hybrid-GA search methods to
a traditional optimization method.

XFOIL Calls

M
ax

im
um

F
itn

es
s

2000 4000 6000 8000 10000
-0.016

-0.0155

-0.015

-0.0145

-0.014

BezierGA
ProfoilGA
Hybrid BezierGA
Hybrid ProfoilGA
Nelder-Mead

Fig. 10 Performance of the original and hybrid
versions of ProfoilGA and BezierGA.

Table 4 Performance Summary

Drag reduction
Algorithm Cd w.r.t. the E168

ProfoilGA 0.01439 11.9%
Hybrid ProfoilGA 0.01406 14.0%
BezierGA 0.0147 10.0%
Hybrid BezierGA 0.01425 12.8%
Nelder-Mead 0.01478 9.5%

The actual airfoils generated by the hybrid version of
ProfoilGA are shown in Figs. 11a–c. Figure 11a shows
all of the airfoils generated in the first generation. Fig-
ure 11b shows the best airfoils for each generation.
Figure 11c shows the final optimal airfoil. Similar
graphs are shown for the BezierGA in Figs. 12a–c.
Note that the aft portions of the optimal airfoils gen-
erated for both methods are very thin. While this type
of geometry is not usually desirable, there are appli-
cation where it can be useful, namely, the design of
partially-double-surfaced sails. If airfoils with thicker
aft regions are desired, geometry constraints can easily
be implemented into both methods.

Recall that the airfoils shown in Figs. 11a and 12a
where randomly generated. The fact that all of the
airfoils in Fig. 11a have maximum thickness locations
close to the optimal value is a result of the values cho-
sen for the ν parameters. As mentioned previously,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.05

0

0.05

b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.05

0

0.05

a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.05

0

0.05

c)

Fig. 11 Airfoils generated by Hybrid-ProfoilGA at
different stages: (a) airfoils in the first generation,
(b) best airfoils for each generation, and (c) final
optimal airfoil.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.05

0

0.05

b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.05

0

0.05

c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.05

0

0.05

a)

Fig. 12 Airfoils generated by Hybrid-BezierGA
at different stages: (a) airfoils in the first genera-
tion, (b) best airfoils for each generation, (c) final
optimal airfoil.

values of 22.5, 24.5, 28.5 and 30.0 were chosen based
on experience. Hence, an advantage of using the Pro-
foilGA method is that a user familiar with inverse
design techniques can significantly reduce the design
space by constraining the design variables. However,
if nothing is known a priori about the optimal velocity
distribution, then the performance of BezierGA is gen-
erally equivalent to ProfoilGA. The XFOIL-predicted
drag polars corresponding to the airfoils shown in
Figs. 11c and 12c are shown in Fig. 13 compared with
the E168.

Figures 14a–c display the results for the best case
examined—the case representing the hybrid version of
ProfoilGA shown in Fig. 10. Figure 14a shows the
dispersion of individuals at each generation. Instant
increases in diversity within the population are visible
at generation 51 and generation 93. This phenomenon
is caused by the use of the micro-GA operator. The

9 of 12

American Institute of Aeronautics and Astronautics Paper 2003–0043



Cd

C
l

0 0.01 0.02 0.03
-0.5

0

0.5

1

1.5

Hybrid-ProfoilGA
Hybrid-BezierGA
E168

Design
Point

Re = 300,000

Fig. 13 Drag polars (XFOIL) for the respective
optimized airfoils for ProfoilGA and BezierGA.

micro-GA operator was originally developed to gen-
erate diversity for very small population sizes.21 A
micro-GA begins with a randomly generated popula-
tion and continues in normal GA fashion until con-
vergence is reached. At this point, a new random
population is created while keeping the best individ-
ual from the previous generations. As can be seen in
Figs. 14a,b, the GA began to converge slightly before
generation 50 and again near generation 93. For the
cases discussed in this paper, micro-GA convergence
was determined when less than 5% of the bits of the
individuals within a population were different than the
best individual. The effect of the new micro-GA popu-
lation on performance can be seen in Fig 14c. There is
a rapid increase in performance just after generation
50. However, there is no increase in performance at
generation 93.

The history of the maximum fitness values for each
generation is shown in Fig. 14c. There are two curves
shown. The more jagged curve shows the maximum
fitness of the individuals of each specific generation.
The smoother curve shows the maximum fitness value
for all individuals up to that point. The jagged curve
shows somewhat large variations even though elitism
was specified. The reason for this is that, for the
case shown, Lamarckian learning was implemented.
When an individual was enhanced using local search,
the terminating value had to be backsubstituted into
the population. The local search operated on real
numbers, so the values of the design variables associ-
ated with the terminating solution had to be converted
into binary in order to substitute the solution into the
population. Since the binary conversion involves inter-
polation, the precision of the terminating values of the
design variables can be reduced through the conver-

Generation

F
itn

es
s

50 100 150 200
-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

a)

Generation

A
ve

ra
ge

F
itn

es
s

50 100 150 200
-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

b)

Generation

M
ax

im
um

F
itn

es
s

50 100 150 200
-0.016

-0.0155

-0.015

-0.0145

-0.014

c)

Fig. 14 Hybrid-ProfoilGA iteration history: (a)
fitness values of every individual within each gener-
ation, (b) average fitness values of the individuals
for each generation, and (c) the maximum fitness
value of the individuals for each generation.

sion process. Precision can be increased if the number
of possible values associated with each control variable
is increased, albeit at the cost of an increased design
space for the GA to search.

Cambered Airfoil Design
As mentioned previously, a second objective of this

research was to see if ProfoilGA could find an airfoil
that outperforms the current state-of-the-art. After
ProfoilGA was tuned by the test cases presented in
the last section, the performance of ProfoilGA was
measured against an optimized cambered airfoil with
known design specification. This test is different than
the previous section in that the goals of the designer
for the benchmark airfoil are known. Thus, the real
effectiveness of ProfoilGA could be compared to a cur-
rent, modern airfoil design technique. Figure 15, from
the paper by Selig, et al.,22 shows the performance
of many existing airfoils for different design lift coef-
ficients at a Reynolds number of 300,000. As can be
seen in the figure, the SG604x family of airfoils repre-
sents a bound on the current state-of-the-art. A goal
of this research was to see if ProfoilGA could find air-
foils that could extend this bound. The SG6042 was
chosen as the benchmark airfoil for this test. The op-
timization problem formulated as follows: find a 10%
thick cambered airfoil with minimum drag at a lift co-
efficient of 0.92 and a Reynolds number of 300,000.
XFOIL predicts L/D = 104 for the SG6042 section at
the specified conditions.

The lower surface of the cambered airfoils could be
parameterized many ways including the approaches

10 of 12

American Institute of Aeronautics and Astronautics Paper 2003–0043



0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Lift coefficient for maximum lift-to-drag ratio

50

60

70

80

90

100

110

M
ax

im
um

 li
ft-

to
-d

ra
g 

ra
tio

SG6043 (t/c=10%)

SG6042 (t/c=10%)

SG6041
(t/c=10%)

SG6040 (t/c=16%)

FX 63-137 (t/c=13.6%)

SD7062 (t/c=14%)S6062
(t/c=8%)

RG15
(t/c=8.9%)

SD6060 
(t/c=10.4%)

S7012
(t/c=8.8%)

A18 (t/c=7.3%)

S823 (t/c=21%)

BW-3 (t/c=5%)

GO 417a (t/c=2.9%)

NACA 2414
(t/c=14%)

S822 (t/c=16%)

SD7032 (t/c=10%)
E387

(t/c=9%)

Clark-Y (t/c=11.7%)

SD7037 (t/c=9.2%)

Re = 300,000

Previously existing airfoils

SG604x Airfoil Family

LRN1007 (t/c=7.3%)

Fig. 15 Maximum lift-to-drag ratio versus the
corresponding lift coefficient for the SG604x airfoil
series as compared with several other airfoils.

mentioned previously. For this research, the lower sur-
face of the airfoil was determined by prescribing the
boundary layer shape parameter through iteration on
the lower surface velocity distribution. The approach
taken is discussed in detail in Selig, et al.22

ProfoilGA was able to produce an airfoil that out-
performs all published airfoils for the specified con-
ditions. The optimum airfoil was found to have a
drag coefficient of Cd = 0.00875 at a lift coefficient
of Cl = 0.92. This corresponds to a lift-to-drag ra-
tio of L/D = 105, which puts the airfoil beyond the
boundary in Fig. 15. The geometry of the airfoil is
compared to the SG6042 in Fig. 16 wherein the y-
axis is expanded in order to show more detail. The
ProfoilGA-generated airfoil has an L/D that is about
1% greater than that of the SG6042. While this per-
formance difference may seem small, there are many
applications where this margin of improvement is very
significant. However, this increase in performance at
the design condition is countered by a decrease in off-
design performance, as can be seen in Fig. 17. This
situation was expected because the SG6042 was highly
optimized for the given conditions and ProfoilGA was
not concerned with off-design drag behavior. However,
this does not mean that ProfoilGA is a single-point
optimization technique. Any quantifiable off-design
characteristics can easily be implemented in the Pro-
foilGA code in the form of constraints.

Conclusions
Results from over 400 cases indicate that both Pro-

foilGA and BezierGA have potential to find solutions
that improve upon existing airfoils. ProfoilGA was
successfully used to find an airfoil with a 14% re-
duction in drag from the comparison E168 airfoil at
Cl = 0.92 and Re = 300,000. Trade studies showed
that ProfoilGA finds solution more reliably and in
shorter time than BezierGA, so long as the user is
familiar with inverse design. This result is due primar-
ily to the smaller design space that ProfoilGA must
search. Only five design variables were necessary to

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.05

0

0.05

0.1
ProfoilGA
SG6042

Fig. 16 Comparison of the optimal ProfoilGA air-
foil with the SG6042 (expanded y-axis).

Cd

C
l

0 0.01 0.02 0.03
-0.5

0

0.5

1

1.5

SG6042
ProfoilGA

Design
Point

Re = 300,000

Fig. 17 Comparison of the XFOIL-predicted drag
polars for the SG6042 and the optimized cambered
airfoil of ProfoilGA.

parameterize candidate symmetric airfoils for the con-
ditions specified in this paper.

Both ProfoilGA and BezierGA were able to benefit
from hybridization of the GA driver. Due to the non-
linearity and discontinuity of the design spaces, only
non gradient-based local search schemes were effective.
Care must be taken when creating a hybrid scheme for
ProfoilGA or BezierGA. Proper choices of GA and hy-
bridization parameters will cause a significant increase
in performance, while poor choices will degrade perfor-
mance substantially.

The design variables used by ProfoilGA allow it to
directly control the velocity distribution. PROFOIL
is used as the inverse method because of its Newton
iteration capabilities. These schemes are used to fulfill
geometry constraints by direct iteration on the velocity
distribution. The schemes also aid in reducing the de-
sign space. XFOIL is used to analyze candidate airfoils

11 of 12

American Institute of Aeronautics and Astronautics Paper 2003–0043



for assignment of a fitness value. Although XFOIL is
very fast compared with RANS methods, it still re-
mains the “bottleneck” of the process. One ProfoilGA
case with 50 individuals and maximum of 300 genera-
tions typically requires 6 hr of processor time on a 1.7
GHz desktop PC.

The real advantages of the ProfoilGA method are re-
alized when designing cambered airfoils. PROFOIL in-
cludes boundary-layer-development iteration schemes
that can be used to significantly reduce the number of
parameterization variables for the lower surface, thus
substantially reducing the search space as compared
with direct-design methods. This method has been
used successfully to find an airfoil that surpasses, al-
beit slightly, the current state-of-the-art.

References
1Topliss, M.E., Toomer, C.A., and Hills, D.P., “Rapid

Design Space Approximation for Two-Dimensional Tran-

sonic Aerofoil Design,” Journal of Aircraft, Vol. 33, No. 6,

1996, pp. 1101–1108.
2Jameson, A., “Aerodynamic Design via Control The-

ory,” Journal of Scientific Computing, Vol. 3, 1998, pp.

233–260.
3Holst, T.L. and Pulliam, T.H., “Aerodynamic Shape

Optimization Using a Real-Number-Encoded Genetic Al-

gorithm,” AIAA 2001-2473, June 2001.
4Fanjoy, D.W. and Crossley, W.A., “Aerodynamic

Shape Design for Rotor Airfoils via Genetic Algorithm,”

Journal of the American Helicopter Society, Vol. 43, No. 3,

July 1998, pp. 263–270.
5Viccini, A., and Quagliarella, D., “Inverse and Direct

Airfoil Design Using a Multiobjective Genetic Algorithm,”

AIAA Journal, Vol. 25, No. 9, 1997, pp. 1499–1505.
6Viccini, A. and Quagliarella, D., “Airfoil and Wing

Design Through Hybrid Optimization Strategies,” AIAA

Journal, Vol. 37, No. 5, 1999, pp. 634–641.
7Sobieczky, H., “Parametric Airfoils and Wings.” Re-

cent Development of Aerodynamic Design Methodologies-

Inverse Design and Optimization, Friedr. Vieweg & Sohn

Verlagsgesellschaft mbH, Braunschweig/Wiesbaden, Ger-

many, 1999, pp. 72–74.
8Jones, B.R., Crossley, W.A., and Lyrintzis, A.S.

“Aerodynamic and Aeroacoustic Optimization of Airfoils

via a Parallel Genetic Algorithm,” AIAA 98-4811, 1998.
9Goldberg, D., Genetic Algorithms in Search, Opti-

mization and Machine Learning, Addison-Wesley, Reading,

Massachusetts, Jan 1989.
10Carroll, D., “Fortran Genetic Algorithm Driver,” CU

Aerospace, Urbana, IL. Available online from:

http://cuaerospace.com/carroll/ga.html, 1995–
11Selig, M.S. and Maughmer, M.D., “A Multi-Point

Inverse Airfoil Design Method Based on Conformal Map-

ping,” AIAA Journal, Vol. 30, No. 5, May 1992, pp. 1162–

1170.
12Selig, M.S. and Maughmer, M.D., “Generalized Mul-

tipoint Inverse Airfoil Design,” AIAA Journal, Vol. 30, No.

11, Nov 1992, pp. 2618–2625.

13Drela, M., “XFOIL: An Analysis and Design System

for Low Reynolds Number Airfoils,” Low Reynolds Num-

ber Aerodynamics, ed. by T. J. Mueller, Vol. 54 of Lecture

Notes in Engineering, Springer-Verlag, New York, June

1989, pp. 1–12.
14Eppler, R. and Somers, D.M., “A Computer Program

for the Design and Analysis of Low-Speed Airfoils,” NASA

TM 80210, Aug 1980.
15Eppler, R., Airfoil Design and Data, Springer-Verlag,

New York, 1990.
16Goldberg, D.E., “Genetic and Evolutionary Algo-

rithms Come of Age,” Communications of the ACM, Vol.

37, No. 3, 1994, pp. 113–119.
17Nelder, J.A. and Mead, R., “A Simplex Method for

Function Minimization,” Computer Journal, Vol. 7, No. 4,

1965, pp. 308–313.
18Brent, P.B., Algorithms for finding zeros and extrema

of functions without calculating derivatives, PhD Thesis,

Stanford University, 1971.
19Goldberg, D.E., and Voessner, S., “Optimizing

Global-Local Search Hybrids,” Proceedings of the Genetic

and Evolutionary Computation Conference, 1999, pp. 220–

228.
20Sinha, A., and Goldberg, D.E., “Verification and Ex-

tension of the Theory of Global-Local Hybrids,” Proceed-

ings of the Genetic and Evolutionary Computation Confer-

ence, 2001, pp. 592–598.
21Carroll, D.L., “Genetic Algorithms and Optimizing

Chemical Oxygen-Iodine Lasers,” Developments in Theo-

retical and Applied Mechanics, Vol. XVIII, H.B. Wilson,

R.C. Batra, C.W. Bert, A.M.J. Davis, R.A. Schapery, D.S.

Stewart, and F.F. Swinson (ed.), School of Engineering,

The University of Alabama, 1996, pp. 411–424.
22Selig, M.S., Gopolarathnam, A., Giguere, P., and

Lyon, C. “Systematic Airfoil Design Studies at Low

Reynolds Numbers,” Fixed, Flapping, and Rotary Wing

Vehicles at Very Low Reynolds, T.J. Mueller (ed.), Progress

in Astronautics and Aeronautics, Vol. 195, AIAA, Reston,

VA, 2001.

12 of 12

American Institute of Aeronautics and Astronautics Paper 2003–0043


