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ABSTRACT

This thesis describes a multi-point inverse design method for airfoils and one
for cascades. In the present sense, inverse design is taken to mean the problem of
finding the shape which corresponds to the desired set of aerodynamic and geometric
characteristics. These include the pitching moment, maximum thickness ratio, part
of the velocity distribution or boundary-layer flow physics, for example, the shape-
factor, skin-friction or linear stability amplification factor distribution. Specifically,
the airfoil or cascade blade to be determined is divided into a desired number of
segments along each of which either the desired velocity distribution or boundary-
layer development is prescribed together with, if desired, the maximum thickness
ratio, etc. The solution is formulated through the use of conformal mapping and a
direct integral boundary-layer technique resulting in a system of nonlinear equations
which are solved through multi-dimensional Newton iteration. It is shown that
certain integral constraints, continuity constraints and stagnation point velocity
distribution relations must be satisfied in order for the inverse problem to be well-
posed. The satisfaction of these conditions may be handled conveniently. This
makes the practical application of the method feasible. Several example airfoils and
cascades are presented to illustrate the two inverse methods.

A solution to the direct analysis problem for the velocity distributions about air-
foils and cascades is also discussed. The current approach to both analysis problems
differs significantly from the standard approaches such as those based.on Theodor-
sen’s method. The airfoil or cascade is mapped to the circle by one transformation
that is expressed in derivative form so that the velocity distribution follows directly.
Also, an exact solution to the flow through an infinite cascade is presented based on

a mapping which has close ties to the Joukowski transformation. As compared with



v
Gostelow’s method, exact solutions can be obtained in a straightforward way. Fi-

nally, extensions of the theory to the inverse design of radial cascades, semi-infinite

bodies and channels are discussed briefly.
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Chapter 1

INTRODUCTION

The purpose of this thesis is to describe the development of a practical inverse
design method for airfoils and one for cascades in incompressible flow. To place the
present work in perspective, it is helpful to start by discussing the state of affairs
at the Langley Memorial Aeronautical Laboratory in the early 1930s. Eastman
N. Jacobs and his co-workers had just finished work on a systematic, empirical
approach to airfoil design and development (Jacobs, Ward and Pinkerton 1933), but
the tremendous practical implications of improvements in aerodynamic efficiency
attainable through extended runs of laminar flow continued to spur interest in

airfoil research.

This research into laminar flow airfoils developed along two paths. First, what
type of velocity distribution would give rise to sustained runs of laminar flow, and,
second, how might this velocity distribution be transformed into an airfoil shape.
Only after attending the Fifth Volta Congress in Rome and having been inspired
by discussions with B. Meville Jones and Sir Goeffrey 1. Taylor did Jacobs realize
that laminar flow would probably be sustained by a continuous run of increasing
velocity (Hansen 1987). With regard to the latter question, that of how to transform
this velocity distribution to an airfoil shape, Jacobs thought that Theodorsen’s
method for airfoil analysis (Theodorsen 1931) could be used as the basis of the
design method by inverting the analysis process. With some contributions made by
Theodorsen and Garrick (1933), the approach proved possible and eventually lead
to the development of a series of low-drag laminar-flow airfoils, namely the NACA

6-series airfoils (Jacobs 1939) that are still applied today. Jacobs’s design method,
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although crude by present standards, was the first of what have come to be known

as inverse airfoil design methods—methods which form the basis of modern airfoil
design methodology.

Surprisingly, the inverse approach of Jacobs was initially received by considerable
skepticism among the group of theoreticians at Langley, and, even after it proved
successful, it was never fully appreciated. Ira H. Abbott who worked with Jacobs at
the time and who later took part in compiling and publishing the airfoil work done
at the NACA (Abbott, Von Doenhoff and Stivers 1945; Abbott and Von Doenhoff
1959) said (Abbott 1980):

We were told that even the statement of the problem was mathematical nonsense

with the implication that it was our ignorance that encourages us. (pp. 23-24)

In the mind of E. I. Garrick, this view had hardly changed when he later wrote
(Garrick 1952):

In the opinion of the writer several difficulties arise or exist in defining this
problem to satisfy both the mathematician and the aerodynamicist. For one
thing, attempts have not been successful in making precise statements of the
problem in regard to uniqueness, closure, proper trailing edge, leading edge
contours, avoidance of grotesque nonstreamline figures most likely to be subject
to separated flow, or of no physical significance as figures eight (or worse). For
another, the prescription of pressure distributions with respect to a reference
chord leads to nonuniqueness; and prescription with regard to normals to the
boundary surface leads to undefiniteness, since the physical boundaries are being
sought. Another difficulty is the fact that our insight and knowledge of flow
behavior are not developed to the point that an exactly defined desirable pressure

distribution can be specified. (p. 145)
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Predictably, these attitudes did not foster continued growth in airfoil research at
Langley as high-speed aerodynamics came into the forefront in the 1940s and 1950s.
Interestingly, Barger (1974, 1975a,b) in a series of NASA reports extended the
inverse method of Jacobs, but it was never received with much enthusiasm. Other

more powerful methods had come into favor.

These more powerful methods were based on conformal mapping (like Jacobs’s
method) and had their origin in Europe, notably Mangler (1938) in Germany and
Lighthill (1945a) in Britain. It is not clear if Jacobs’s work had any direct impact
in these developments; chances are it did not since Jacobs never fully published
his approach and only few details exist (Theodorsen and Garrick 1933; Theodorsen
1944). These new methods of Mangler and Lighthill showed clearly for the first
time that the velocity distribution specified around the airfoil could not be entirely
arbitrary. Specifically, they showed that the velocity distribution had to satisfy
three important integral constraints: one in order to guarantee compatibility with
the freestream velocity and two in order to ensure closure of the airfoil profile.
While these theories did much to dispell doubts about the theoretical soundness of
the inverse approach, practical application was hampered severely by the lengthy
calculations involved in obtaining the final airfoil shape; it was said that a skilled
mathematician could perform the calculations in approximately 20 hours. Thus,
most of the early work done following the theory of Mangler and Lighthill was
focused primarily on improving the numerical solution, both its speed and accuracy
(Peebles 1947; Glauert 1947; Timman 1951; Peebles and Parkin 1956). Starting in
the 1960s emphasis had shifted towards practical application through the use of the
computer (Nonweiler 1968; Ingen 1969; Arlinger 1970; Strand 1974; Polito 1974).
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By the 1970s, the inverse approach had matured into a very powerful tool for
design, but it was not without shortcomings—shortcomings that still exist today.
The all-important integral constraints are expressed in terms of the velocity distri-
bution around the airfoil not as a function of arc length but as a function of the
angular coordinate around the circle from which the airfoil is mapped. In other
words, the desired velocity distribution can only be specified indirectly as a func-
tion of the circle angular coordinate. Iterative techniques, however, were introduced
by Arlinger (1970) and James in 1970, as discussed by Liebeck (1990), so that the
desired velocity distribution could be specified from the outset, subject of course to

the integral constraints.

From the need to satisfy the integral constraints arises a different problem. Since
there are three integral constraints, it is necessary to introduce into the specified
velocity distribution three, free parameters in order to satisfy them. Many successful
ways have been devised to do this. A difficulty occurs when the values determined
for these free parameters lead to unrealistic velocity distributions which in turn
correspond to unrealistic airfoils, for instance, crossed airfoils or figure of eights
as referred to by Garrick (1952). Essentially, all practical inverse methods employ

some kind of iterative technique to overcome this difficulty.

Finally, the last shortcoming pertains not to the application of the method
but to the theory itself. Methods based on the theory of Mangler and Lighthill
may be regarded as single-point inverse airfoil design methods; that is, the desired
velocity distribution is prescribed at a single angle of attack. The fact is that many
airfoils must operate over a range—not at a single point. Whether or.not an airfoil
designed by a single-point method satisfies multi-point design requirements must

be determined through post-design analysis at the operating conditions of interest.
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Consequently, the single-point design methods tend to be very tedious if multi-point
design requirements are imposed. Although design by this single-point method has
lead to many successful airfoils, a theory that has the explicit capability of handling

multi-point design requirements from the outset is favored.

While efforts were underway in the 1950s to improve the numerical techniques of
the single-point design methods, Eppler published his theory for multi-point design
(Eppler 1957). Since this time, the method has been improved and made readily
available as a computer program (Eppler and Somers 1980a,b; Eppler 1990). To
this day the program enjoys increasingly widespread use. The Eppler method al-
lows the airfoil to be divided into a desired number of segments along each of which
the velocity distribution is prescribed together with the design angle of attack at
which the velocity is to be achieved. In this way, multi-point design requirements
can be satisfied during the actual design effort, not iteratively through post-design
analysis. Despite the versatility of the method as a practical design tool, the actual
theory has received very little attention; notable exceptions are Miley (1974), Orms-
bee and Maughmer (1984) and Selig and Maughmer (1991). Miley (1974) applied
the Eppler method to the design of low Reynolds number airfoils, and Ormsbee
and Maughmer (1984) derived necessary conditions and integral constraints for the
attainment of finite trailing-edge pressure gradients. The contributions made by

Selig and Maughmer (1991) will be discussed in this thesis.

The 1950s also marked the beginning of new efforts aimed at the more precise
definition of the velocity distribution in order to control the boundary-layer behavior
and thereby control aerodynamic performance. In this respect, Wortmann (1955,
1957, 1961) and Eppler (1960, 1963a,b, 1969) made signiﬁcaﬁt progress during the

development of low-drag laminar-flow airfoils for sailplane applications. Most 1m-



portantly, the design philosophy of Wortmann regarding the turbulent pressure re-
covery, specifically the philosophy that the boundary layer should avoid separation
everywhere by a constant margin, was supported by the experiments of Stratford
(1959). Subsequently, these findings, taken to the extreme, were applied by Liebeck
and Ormsbee (1970) and Liebeck (1976, 1978) in the design of a special class of
high-lift low-drag airfoils and also by Miley (1974) in the design of airfoils for low
Reynolds number applications. Out of developments such as these, it became evi-
dent the one desirable way to approach viscous design was to prescribe the margin by
which the boundary layer avoids separation, specifically the boundary-layer shape
factor (Henﬂerson 1978; Goettsching 1988) which itself is a measure of the tenden-
cy of the boundary layer to separation. In other cases, it has been desirable to
achieve other boundary-layer distributions in order to control such things as lami-
nar flow, transition location, laminar and turbulent separation, stall characteristics,

cavitation, etc. (Viken 1980; Shen and Eppler 1981; Maughmer and Somers 1989).

Most often, a desired boundary-layer development is achieved indirectly by per-
forming a boundary-layer analysis of the prescribed velocity distribution and com-
paring the particular boundary-layer development with what is desired. If agree-
ment is not satisfactory, the velocity distribution is modified interactively until
agreement is reached. Since this approach is rather tedious, there has been some
movement toward developing methods that allow the desired boundary-layer distri-
bution to be prescribed directly from which ultimately the profile shape is derived
(Henderson 1978; McMasters and Henderson 1979; Goettsching 1988). The pro-
cedure involves first finding the velocity distribution corresponding to the desired
boundary-layer development through the use of an inverse boundary-layer tech-

nique. Second, through an inverse design method, the corresponding profile shape



is determined from the velocity distribution. Such methods, however, have not been
adopted widely mainly for three reasons. First, the resulting velocity distribution
from the inverse boundary-layer method will not satisfy the necessary three integral
constraints automatically. Thus, some adjustment to the velocity distribution must
be made, and, afterwards, the desired boundary-layer development will no longer
be achieved exactly. Second, it is not always possible to express the boundary-layer
equations in terms of the desired boundary-layer development. Third, although
these methods are suitable for single-point design, it is unclear how to formulate

the method for multi-point design.

It should be mentioned that an alternative approach to airfoil design is through
optimization (Hicks and Vanderplaats 1977; Sobieczky 1989; Ghielmi et al. 1989;
Drela 1990a; Sorensen 1991). Optimization formulations by their very nature have
the particular potential advantage of taking into account all the relevant consider-
ations in the areas of aerodynamics, structures, and stability and control just to
name a few. Ironically, therein lies its very weakness. In a consideration of the
multi-disciplinary nature of the design problem, it becomes necessary to define a
suitable object function and constraints. What determines the best object function
and appropriate constraints, however, is usually not known beforehand but rather
only becomes known after the design process is well underway. Research into expert
systems will probably aid in this definition process, but practical application is far
from becoming a reality. For the time being, the airfoil designer will remain a key

element in the design process and inverse techniques will be the tool of choice.
The significant contribution of the current research pertains to the development

of a method that allows for the prescription of either the velocity distribution or

boundary-layer development in a multi-point fashion. In addition, single parame-



ters like the airfoil maximum thickness and the zero-lift pitching moment may be
prescribed—parameters which usually can only be specified in optimization formu-
lations. After having specified the desired set of characteristics, the airfoil shape
is determined by coupling an incompressible, potential-flow, inverse airfoil design
method with a direct boundary-layer analysis method and solving the resulting
nonlinear system of equations via a multi-dimensional Newton iteration technique.
Details of the method (Selig and Maughmer 1991a,b) and example airfoils are given
in Chapter 2. Also described in Chapter 2 is a new potential-flow airfoil-analysis

method based on conformal mapping.

The principles applied in the design of isolated airfoils can also be applied in an
analogous manner to cascades. Lighthill (1945b) was the first to show, through the
use of conformal mapping, that in the design of an infinite cascade of airfoils the
velocity distribution had to satisfy three integral constraints as with the isolated
airfoil, albeit the constraints are considerably more complicated. In fact, applica-
tion of the theory is difficult enough so that relatively few have ventured to apply
Lighthill’s method (Crooks and Howard 1954; Johnson 1957; Ruzicka and Spacek
1981). Part of the difficulty stems from the use of two mappings rather than one,
and part comes from the evaluation of the resulting integral constraints. It seems
that efforts at cascade design by conformal mapping methods have been all but
abandoned. Methods based on singularity distributions are by far most common
(e.g., Wilkinson 1969; Schwering 1970; Lewis 1982).

A drawback of the Lighthill method and methods based on singularity distri-
butions is that they are only capable of solving the single-point inverse cascade
design problem. As with the isolated airfoil, there is a strong interest in*solving

the multi-point design problem. To address this need, a theory for a multi-point



inverse cascade design has been formulated and is presented in Chapter 3. As with
Lighthill’s method, conformal mapping is used. The difference is that instead of
involving two mappings only one is used. The resulting integral constraints are
expressed in such a way that their evaluation is relatively straightforward. Also
given in Chapter 3 is a simple theory for the generation of exact solutions to the
flow through an infinite cascade and a new potential-flow cascade-analysis method
based on conformal mapping. Chapter 4 gives suggestions for future work. Finally,

conclusions are presented in Chapter 5.
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Chapter 2

ISOLATED AIRFOILS

This chapter is made up of three, main parts related to isolated airfoils. In
section 2.1, a potential-flow multi-point inverse airfoil design method is presented.
The method forms the basis of a fairly general inverse airfoil design tool for incom-
pressible flow. Viscous design aspects are considered in section 2.2. Finally, it is
shown in section 2.3 that the theory developed in section 2.1 can be used to solve
the analysis problem; that of finding the velocity distribution about a given airfoil

shape.

2.1 THE POTENTIAL FLOW INVERSE DESIGN PROBLEM

As discussed in the introduction, the preferred way of solving the inverse air-
foil design problem for incompressible flow is through conformal mapping. This
preference is derived from the fact that the flow around an arbitrary airfoil may be
mapped to the flow about a circle. The flow in this circle plane is easily determined;
it only remains to determine the mapping. How this mapping is actually determined
depends on the type of problem being solved. The Joukowski airfoil problem is one
for which the mapping is specified. From this mapping both the airfoil shape and
the flow about this airfoil are determined. For the analysis problem of an arbitrary
airfoil, the task becomes that of finding the mapping which takes the circle to the
airfoil. From this mapping follows the velocity distribution. Lastly, there is the
inverse problem. The object is to determine the mapping not from the airfoil shape

but from the specified airfoil velocity distribution. In this case, it is most convenient
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to solve not for the mapping, per se, but for the mapping derivative since this can
be related directly to the specified velocity distribution. This is the approach taken

by Mangler (1938), Lighthill (1945a), Eppler (1957) and several others afterwards.

This section begins with a consideration of an extension of the Eppler theory
(1957). In particular, the mapping is assumed to be of the form capable of mapping
the circle to an airfoil with either a cusped or finite trailing-edge angle. Eppler
(1957) only considers the cusped airfoil case. Furthermore, a new solution proce-
dure is developed which allows for prescriptions of desired parameters, such as the
pitching moment, maximum thickness ratio and velocity distribution v(s). In sec-
tion 2.2, this solution technique is generalized to include viscous design. In what
follows, the integral constraints for multi-point inverse airfoil design are derived
through the use of conformal mapping. Also, continuity conditions on the velocity
distribution are shown to result from specifying the velocity distribution in a piece-
wise (multi-point) fashion. Example airfoils, not meant for practical application,
are finally presented to illustrate the use of the basic theory and the implementation

of the Newton iteration in design.

2.1.1 Conformal Mapping and Conditions on the Mapping

The complex potential for uniform flow of unit velocity at angle of attack a

about a unit circle in the {-plane is given by

) iox T
F(g):e"“g+%+;—ﬂhc (2.1)

where I' = 47 sin a so as to satisfy the Kutta condition by fixing the rear stagnation
point at { = 1. The front stagnation point is then located at ¢ = v = 7 + 2a. To
obtain the flow about an arbitrary airfoil in the z-plane, the flow about the circle

in the (-plane is mapped via z = z(({) as illustrated in figure 2-1.



Figure 2-1

Mapping from circle to airfoil plane.
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The mapping must satisfy three conditions: the airfoil trailing-edge angle must
be finite, the flow at infinity must be unaltered, and the airfoil contour must close.
These latter two conditions lead ultimately to the integral constraints for multi-

point inverse airfoil design. The mapping is assumed to be of the form

dz 1\'"° — ) i
7=(1-g) oo Liem i .

where, for a convergent power series, it is required that [{| > 1. As discussed by
James (1971), the Schwarz-Christoffel factor (1—1/¢)!~¢ guarantees an airfoil with a

trailing-edge angle of me. Taking € = 0 for a cusped airfoil yields the transformation

used by Eppler (1957).

To determine the remaining conditions on the mapping, it is helpful to expand

equation (2.2) as

dz ' a; — 1+ €-+1b;
— — e"0tibo (1 4+ - ol > 2.3
& : (2.3)

The condition that the flow at infinity be unaltered is expressed as

dz

Iim — =1 2.4
ViR, (2.4)

which is only satisfied if
ap=0 and by, =0 (2.5a,b)

The condition that the airfoil be closed can be written as

fcz dz = f{cg Tdc=0 (2.6)

where C. and C; are about the airfoil and the circle, respectively. From equation

(2.3), this condition is only satisfied if

ag=1—€¢ and b =0 (2.7a,b)



14

If the intent were merely to generate an airfoil, one could stop here. The series
Y (am + by )(™™ could be truncated, and the coefficients could be set arbitrarily
with the simple exception that ay = by = by = 0 and a3 = 1 — €. The mapping
would satisfy all of the necessary conditions and would produce an airfoil with the
desired trailing-edge angle me. The motivating factor to continue comes from the
desire to specify not the series coefficients explicitly but rather the velocity in a

multi-point fashion about the airfoil.

2.1.2 Relation between the Mapping and the Complex Velocity

The problem at hand is to relate the desired velocity distribution about the
airfoil to the series coeflicients of the mapping. To this end, the complex velocity

in the z-plane is expressed as

dF _.

—, = ve (2.8)
which on the boundary of the unit circle, ¢ = e*®, becomes
ar — o(d)e=i6(%)
Ts | i =v(g)e (2.9)

Obtaining the real and imaginary parts of equation (2.9) for later use is facilitated
by taking its natural logarithm. This, however, requires special consideration since
v(¢) is negative along the lower surface aft of the leading-edge stagnation point
as shown in figure 2-2. This problem is alleviated by taking the absolute value,
[v(¢)] = v*(¢). In so doing, the flow direction must jump by 7 at the leading-edge
stagnation point and by 7e at the trailing edge. To reflect these jumps, 8(¢) is

replaced by 6*(¢4). Now
dF
dz

=@ (2.10)
¢=e? :

and taking the natural log;Lrithm yields

() —mer(e)—ie(9) (2.11)
(dZ)‘gzeup
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Figure 2-2 Relation between v(¢) and v*(¢): (a) velocity v(¢) and flow

angle 6(¢) near the stagnation point, () velocity v*(¢) and
flow angle 6*(@) near the stagnation point and (c¢) velocity v(¢)
and v*(¢) at two points on the airfoil.
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To relate v*(¢) and 6*(¢) to the series coeflicients, the complex velocity is written

alternatively as

dF
dz

_ dF/dCI<=Ei¢
¢=c'? dz/ddgzeﬁf’

The numerator dF/d(]| c=cid is simply the known flow over the circle given by

(2.12)

dF

|, = 4ein(8/2) cos(9/2 - a"(g))e O (2.13)
¢=ei®

The reason for writing the angle of attack as a*(¢) will be explained in section

2.1.5. Since the factor cos(¢/2 — a*(¢)) is negative for m + 2a*(¢) < ¢ < 2, the

complex velocity about the circle is, in preparation for taking its natural logarithm,

alternatively written as

dF

— = 4sin(¢/2) | cos(¢/2 — a*(¢))|e (e~ T/2=m (9)) (2.14)
d¢ [o—cid

where
0, 0<¢<m+2a"(¢)

for 0 < ¢ < 27. The step function 7*(¢) is introduced in order to account properly
for the jumps in the flow direction at the front and rear stagnation points on the

circle.

From equation (2.2), the derivative of the mapping function on the unit circle is

j_z = (1- e_w)l“eexp Z (am + tbm) g~ ime (2.16)
C=el¢ m=0
or
= (1 — e—i%)i=ePO)+iQ(0) (2.17)
where
P(¢)+:1Q(¢) = (am cosme+by, sinme)+1 (b, cosmep—an, sinme) (2.18)

m=0 m=0



17

Using equations (2.14) and (2.17) and taking the natural logarithm of equation

(2.12), the following result is obtained

1n(i1:> ——ln{ CL it }

2| cos(¢/2 — a*(4))]
+i[n"(¢) — ¢/2+ e(n/2 — ¢/2)] — P(¢) —iQ(¢) (2.19)

Equating equations (2.11) and (2.19) gives the important result

o ( (sing/2) (@)
P(é) +iQ(9) = ‘1“{ 2l cos(d/2 — a(9))] }
+i[6%(8) + () — ¢/2 + €(n/2 — ¢/2)] (2.20)

It is seen from equation (2.20) that the specification of the velocity v*(¢) and
angle of attack a*(¢) determines P(¢) uniquely. Alternatively, the specification of
the airfoil flow direction 6*(¢) and a*(¢$) determines Q(¢) uniquely. From either
P(¢) or Q(¢), the corresponding conjugate harmonic function may be determined

through the Poisson integral exterior to the unit circle, that is,

2m _
(¢)+1Q /Q cot ¥ ¢d¢+i—2—1;/0 P(¢)cot¢2¢d¢

(2.21)
A discussion of how Q(¢) is determined numerically from P(¢) is given in section

2.1.7.3.

2.1.8 Airfoil Coordinates

Once P(¢) and Q(¢) are known, the airfoil coordinates may be computed by

equating the expression

dz _dz/d¢__, _1d_a: ég
0o~ i ¢<d¢ “dqﬁ) (2:22)
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with equation (2.17). After some manipulation, this gives
z(¢) + iy(¢) = — f(z sin ¢/2)} el (9) lle/2—eln/2=0/2)+Q(9)] g4 (2.23)
The airfoil coordinates, z(¢) and y(¢), are then obtained through quadrature.

2.1.4 Airfoil Lift and Moment

By the Blasius relations, the airfoil lift and moment are given by

i dF\? 1 dF\?
L:-épRe{sz<a> dz} and MO—EpRe{fCZ(E) zd.z} (2.24a,b)

where the lift acts perpendicular to the freestream and the moment is taken as pos-
itive in the clockwise direction. The contour C, is any closed curve which encloses

the airfoil. It is well known that equation (2.244) leads to
L=pVl (2.25)

Since I' = 47 sin @, the lift coefficient becomes

L 47pV si
o= = ——— (2.26)
spV*¢c spVie
Taking V = 1, as is consistent with equation (2.1), gives
87 i
o = 7 sin o (2.27)

C

Typically, the airfoil as computed by equation (2.22) has ¢ ~ 4. Using this ap-
proximation for the chord and assuming a small angle of attack gives ¢; =~ 27a.
Consequently, specifying an angle of attack o is essentially like specifying the lift

coefficient.
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Equation (2.24b) for the moment is evaluated by taking C. to be the contour
about the airfoil itself; however, the integral (2.24b) is evaluated not in the airfoil

plane but in the circle plane. Using the relations

dF dF/d( dz
= a2/l an dz dCdC (2.28a,b)

expression (2.24b) becomes

gl f (22}

where the contour C; has been mapped into the contour C¢ about the unit circle.

Evaluation of the moment begins with the determination of the integrand in

equation (2.29). From equation (2.1), it is found that

F_ ol 1)1
O B

which yields

dF\? 0 { 2(1 + ") 2etT+ (1 +€)?2  2e™7(1 +e') 27
) =21 4 - + 2.31
(dC) ¢ ¢? ¢? ¢ (2:31)

From equation (2.2), it is found upon expansion that

L L (2.32
dC - 42 4 )
where
1
& = 5(e—1)+a,2 + by (2.33)

Inverting equation (2.32) gives

1 A

dz/d§ = ] - C_z L sua (2.34)



and integrating equation (2.32) gives

A (2.35)

Z:C—Z

where the constant of integration has been taken as zero for convenience. Combining

equations (2.31), (2.34) and (2.35) produces

dF\* 2({) _ _sia iy L 267+ (14 e)2 —2)
so that

‘ g 2 z(¢) — 9rife—2ia[9i7 iT\2 _ .
f@(d() Gzjac & =2 {e77[2e + (1 +€7)° =22} (2.37)

Taking the real part of equation (2.37) according to equation (2.29) finally gives
Mo = 2mp[by cos2a — (az — 1/2 4 €/2) sin 2¢/] (2.38)

where, from the Euler formulas for the Fourier series coefficients which define the

mapping derivative [equation (2.2)]

2w 2m
as = l/ P($)cos2¢do and by = l‘/‘ P(¢)sin2¢d¢  (2.39a,b)
0 0

™ ™

The moment as given by equation (2.38) is, as previously stated, the moment
about the origin in the airfoil plane. Following standard convention, however, it
is desired that the moment be about the airfoil quarter-chord point. Equation
(2.23) upon integration provides the airfoil shape relative to an additive constant
of integration and does not therefore locate the airfoil in proper reference to the
origin. In order to find the moment about the airfoil quarter-chord point, the first
step is to locate the airfoil in proper reference to the origin and then to resolve the
lift and moment at the origin into a lift and moment at the quarter-chord point.

The latter problem is solved through simple statics, while the former one requires
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some ingenuity if it is to be solved short of determining the entire mapping z({)—a
task which would be computationally expensive.

A straight-forward procedure for finding the proper placement of the airfoil

relative to the origin starts by dividing equation (2.35) by ( to yield

2) AL
¢ e Cz+ (2.40)

Integration of this equation about the unit circle as

R ACE IR 2

gives, upon integration of the right hand side,

A0 4o
fCC c (=0 (2.42)

On the unit circle, this becomes

2w i
/ :I:(¢) +Zy(¢) -ei¢> d¢ = {] (243)
0 €
or
2m 27
/ z(d)dg =0 and / y(p)ddp =0 (2.44a,b)
0 0

In words, the airfoil coordinates must satisfy equations (2.44a,b) or else the airfoil is
not placed in proper reference to the origin. Realizing that the airfoil as computed
by equation (2.23) will not satisfy these equations automatically (since the additive

constant is not known a priori), corrections can be introduced as

o(¢)=3(¢)+6c and  y(¢) = i(¢) + by (2450, b)

where Z(¢) and y(¢) are the airfoil coordinates as computed through equation (2.23)
and éz and éy are the corrections. Substituting equations (2.45a,b) into (2.44a,b)

yields the correction equations

1 2T 1 2m
~5 i (@) do and 0y = —— y(¢) do (2.464a,b)

2w Jo

bz =
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Once having solved for éz and dy, the airfoil may be translated by equations
(2.45a,b).

With the airfoil in proper reference to the origin, the moment about the quarter-
chord point M./, can be found. The pitching-moment coefficient about the quarter-
chord point Cm, )y is given by

_ Mc/-i . 2Mr:f~1
Cmepy = %pV%E T pe?

(2.47)

using V' = 1. For the special case of zero lift (a = 0), it is not necessary to correct
the airfoil coordinates by éz and éy because the point about which the moment is
taken is arbitrary. In this special case, the zero-lift pitching-moment coefficient ¢y,

becomes through equation (2.38)

Mo(a=0) 4mb,
c = =
my %pvz c2 c2

(2.48)

2.1.5 Multi-Point Design Capability of the Theory

For discussion, P(¢) given by equation (2.20) is rewritten as

_ . f (2sing/2)~v"(9)
Plé)=-1 {2|cos(¢/z—a*(¢))r} S

The function P(¢) depends only on ¢ and is defined by specification of v*(¢) and

a*(¢), now termed the design velocity distribution and the corresponding design
angle of attack distribution. For single-point design, as in Lighthill’s theory (1945a),
a*(¢) is zero while v*(@) is a continuous specified function. It is not necessary,
however, that v*(¢) and a*(@#) be continuous functions; rather, it is only necessary
that P(¢) be continuous. Therefore, in order to maintain a continuous function
P(¢), a discontinuity in v*(¢$) between two segments must be compensated by a

corresponding discontinuity in a*(¢). Consequently, the airfoil may be divided
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into any number of segments along which the velocity v*(¢) and angle of attack -
a*(¢) are given. Practical considerations for multi-point design dictate that over
each segment of the airfoil a*(¢) be constant while v*(¢$) may vary in order to
obtain some desired velocity distribution over the given segment at the design angle
of attack. This process of specifying v*(¢) for different segments of the airfoil at
different angles of attack a*(¢) easily allows for multi-point design. This is the most
important result of the theory: discrete segments of the airfoil may be designed for
different angles of attack, or more generally each segment may be designed for a
different operating condition (Reynolds number, angle of attack, etc.). This result

will be illustrated later by example.

2.1.6 Constraints and Special Considerations

2.1.6.1 Integral Constraints

As with any inverse airfoil design formulation, the specification of the velocity
distribution is not completely arbitrary. Since the function P(¢) can be expressed
as a Fourier series where Q(¢) is the conjugate series, the conditions on the map-
ping coefficients, equations (2.5a,b) and (2.7a,bd), give rise to integral constraints on
both P(¢) and Q(#). The integral constraints on P(¢) come from the first three
coeflicients of the Fourier series representation for P(¢), that is, from equations

(2.5a), (2.7a,b) and (2.18)

1

@ = /L; P(¢)d$ =0 (2.50a)
1 27

o = — /(: P(¢)cosdpdp =1—¢ (2.500)
1 2w

by :?/U P(¢)singdgp =0 (2.50¢)



Likewise, the three integral constraints on Q(¢) are

b = o / Q¢ =0 (2.51a)

by = 7 Q( Jcospdop =0 (2.51b)

0

2m
—a; = %/ Q(P)singpdep =e—1 (2.51¢)

Considering the expressions for P(¢) and Q(¢), it is seen that equations (2.50a-c)
are integral constraints on v*(¢) and a*(¢), while equations (2.51a-c) are integral

constraints on 6*(¢) and a*(¢).

As could be anticipated, the preceding integral constraints are closely related
to several others found in the literature. In fact, they are thought to be the most
general form of the integral constraints for incompressible inverse airfoil design. For
cusped airfoils, the integral constraints on P(¢) are equivalent to those of Eppler
(1957) when € = 0. Eppler does not give or discuss the integral constraints on Q(¢)

because these integral constraints are not a necessary step in the formulation.

For single-point design in which the angle of attack « is constant, the integral

constraints reduce to those of Strand (1973) given for v}(¢) and 8% (¢) by

1 0

27
/ Invi(¢){ cos¢ p dp = { —27sin’ (2.52)
¢ sin ¢ 7 sin 2a
and
2m 1 2T
/ 0%(p) cos¢ p dp =< —msin22a (2.53)
U sin ¢ —27sin® a

In verifying equation (2.53), the integration must be performed in two parts for
a given angle of attack a. The first part is from the trailing edge ¢ = 0 to the

stagnation point ¥ = 7+ 2 with the integrand Q(@) = 6%(¢) — ¢/2+€(m/2 — ¢/2).
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The second part of the integration is from the stagnation point to the trailing edge
¢ =27 with Q(¢) = 0, () + 7 — ¢/2 + (/2 — ¢/2).
For a single-point design at zero-lift where a*(¢) = 0 and v*(¢) = v;(¢), the

integral constraints on P(¢) reduce to

1 0

2m
/ Invj(¢){ cos¢ p dp =1 0 (2.54)
0 sin ¢ 0

as presented by Lighthill (1945a). It is not well known that these last integral
constraints commonly attributed to Lighthill were derived earlier by Mangler (1938).
Furthermore, as noted by Mangler, essentially the same conditions were found even

earlier by Betz (1934) and, for the most part, by Weinig (1929).

2.1.6.2 Continuity Constraints

For multi-point design, the requirement that P(¢) be continuous introduces a
continuity equation on P(¢) at each arc limit between segments where there is a
jump in v*(¢) and a corresponding jump in a*(¢). This condition of continuity

between segments is expressed as

P (¢i) = P-(9:) (2.55)

) w4
[cos(@i/2— ()] [cos(@i/2 — a=(93))

where ¢; is the arc limit between segments ¢ and 7 + 1. An alternative and more

(2.56)

physical derivation of the continuity constraints is presented in Appendix A. This
condition of continuity is not strictly necessary. For instance, the design velocity
distribution could jump discontinuously at a point on the airfoil and thereby model

suction (Lighthill 1945a; Glauert 1947) or blowing on the airfoil surface. Such airfoil
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flows will not be considered here, and P(¢) is required to be continuous as indicated

previously.

2.1.6.3 Limitine Behavior of the Velocity Distribution in the Vicinity

of the Stagnation Points

The velocity distribution must satisfy not only the integral constraints and con-
tinuity conditions, but in the vicinity of the stagnation points it must go to zero in

a special way. This may be seen through equation (2.20) which gives
v*(¢) = (2sin ¢/2)° 2| cos(d/2 — a*(4))|e~ T (2.57)

Stagnation points will always occur at the forward stagnation point ¢ = v = 7 +
2a*(¢) and, when € # 0, at the trailing edge ¢ = 0, ¢ = 27. According to equation

(2.57), the velocity in the vicinity of the trailing edge must go to zero as

Jim v"(6) ~ (sin /2)" 9:(¢) (2.580)
lim, o() ~ (sin /2 9(9) (2.585)

where g1 (¢) and g_(¢) are positive, non-zero functions. James (1971) obtained the
same theoretical trailing-edge velocity relation in an effort to understand the airfoil
trailing-edge curvature singularity. Similarly, from equation (2.57), the velocity in

the vicinity of the forward stagnation point must go to zero as

Jim "(6) ~ |cos(¢/2 — o (¢))] h+(¢) (2.59a)
Jlim v(9) ~ | cos(6/2 — a*(6))| h-(9) (2.500)

where the forward stagnation point = is at 7 + 20™(¢) and where h;(¢) and h_(¢)

are positive, non-zero functions.
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2.1.7 Numerical Implementation

The conditions on the mapping function which lead to the integral constraints
on P(¢) require that the specification of P(¢), using v*(¢) and a*(¢), must contain
at least three, free parameters to be determined by solution. For each segment,
another free parameter must be introduced to satisfy the continuity constraint on
P(¢) between segments. All of the necessary free parameters are introduced in
a way that facilitates the numerical solution, that allows for implementation into
the multi-dimensional Newton iteration, and that permits the design of practical

airfoils.

2.1.7.1 Specification of the Velocity Distribution

The four-segment airfoil depicted in figure 2-3 1is given as an example. The
design velocity distribution and the design angle of attack distribution for each

segment are prescribed piecewise as follows:

v*(¢) =v1w(e)

a*(¢) = Q3 0 S ¢ S ¢1 (260&)

v*(p) = va + D2(¢h2)
a’(¢) = az $1< ¢ < ¢ (2.60b)

v (@) = vs + D3(¢3)
a’(¢) = as ¢2 < ¢ < ¢ (2.60c)

v™(¢) = v W(¢)

a*(gb) = Q4 ¢3 < ¢ S 27 (260d)



Figure 2-3 Circle divided into four segments and mapped to a four-segment
airfoil.
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where ¢» = ¢—¢1 and g3 = ¢— ¢2. The velocities v; and the design angles of attack
a; are constant along their respective segments, while 771'(9;51'), w(¢) and w(P) all vary
with ¢. The velocity function w(¢) is termed the upper-surface recovery function,
while w(¢) is the corresponding function for the lower surface. The special notation

(7) will be discussed later. Although only four segments are presented here, the

method is general enough to handle any number of intermediate segments of the

type v*(¢) = v; + vi(d:).

The upper-surface recovery function is defined by

w(g) = wil($)ws” (9)wr(d), 0<9<é (2.61)
where
_ cos ¢ — cos ¢y )
’U)W'((ﬁ) =14 K( 1 + cas )7 0<¢<¢mn (262‘1‘)
2
ws(¢) = 1~ 0'36<C01Sq—s;ozo;js> , 0<¢<¢s (2.62b)
1, ¢S <o < ¢T’I'
sin ¢/2
wr(¢) = { sin ¢r /2’ 0<é<dér (2.62¢)
1, ¢F < ¢ ot ¢TT'
with ¢ = ¢1. The lower-surface recovery function w(¢) is of the same form

except that wy (@), ws(d), wr(¢) and the parameters u, Ky, K, ¢w, ¢s and ¢F
are replaced by @y (¢), Ws(9), Tr(4), &, Ku, K, ¢y = ¢3, ¢ and ég.

The first two contributions to the recovery functions, wy(¢) and ws(¢), appear
in the Eppler formulation (1957) while the last contribution, wg(¢), is new and must
be introduced to satisfy the trailing-edge velocity relations (2.58a,b). For a typical
airfoil design ¢ > ¢s > ¢F; for instance, ¢~ = 100°, s = 30° and ¢p = 15°. In
this case, the first factor wi;*(¢) controls the main part of the recovery. The second

factor w?” (¢) controls to a great extent the velocity distribution in the vicinity
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of the trailing edge which, in turn, affects the shape of the airfoil near the trailing
edge as will be discussed in section 2.1.9. Using the values for the arcs limits given
previously and taking p = 0.3, Ky = 0.1, e = 0, K = 1 gives the total recovery
function shown in figure 2-4. As seen from the figure, the component functions
only take effect over their respective arc limits. Since in this example ¢ = 0, the
airfoil has a cusped trailing edge. An airfoil with a 10° trailing-edge angle, for
instance, requires ¢ = 1/18. In this case the recovery function now produces a zero

trailing-edge velocity as shown in figure 2-5.

As shown in figure 2-6 for a segment ¢;_; < ¢ < ¢;, it is possible to select a
design angle of attack such that the stagnation point falls on that segment since
v = 7™+ 2a;. In this case, it is necessary to follow the forward stagnation point
velocity relations (2.59a,b). Because the forward stagnation point moves with the
angle of attack, however, it is possible to specify the design angle of attack such that
the stagnation point falls outside of the segment. In this case, the forward stagnation
point velocity relation is bypassed. This is the approach adopted by Eppler and
followed here. Considering all segments, the condition that the stagnation point

falls outside of the segment (either ahead of it or behind) is met by requiring

¢y — T T
) <y < E (263&)
¢ —m ¢ — T
—g R or g <@<3 (2.63b)
_%<_a3<_¢’2z_# or ¢32_ﬂ-<a3<% (2.63¢)
¥ g g BT (2.63d)
T [83 .
g 2

In the design of a typical airfoil, these conditions are met easily.

A non-constant design velocity distribution over each intermediate segment is

introduced through the velocity functions ﬁ{((};f). This capability is not considered
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Figure 2-4 Component recovery functions and total recovery function for
ow =100°, ¢5 =20°, =03, Ky =0.1,e=0,and K =1
corresponding to an airfoil with a cusped trailing edge.
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Figure 2-5 Component recovery functions and total recovery function for
éu- = 100°, s = 20°, ¢p = 10°, p = 0.3, Ky = 0.1,
¢ = 1/18 and K = 1 corresponding to an airfoil with
a 10° trailing-edge angle.
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Figure 2-6 Example where the leading-edge stagnation point falls on the
segment at the segment design angle of attack.

33
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in the Eppler solution formulation. The notation (7) is used to indicate the value
relative to the beginning of the segment i. Thus, as drawn in figure 2-7, @; is
the relative arc limit for the segment. Likewise the velocity @;(¢:) is the velocity

relative to the beginning of the segment such that
2i(¢:i=0)=0 (2.64)

as indicated in figure 2-7. In equations (2.60b,c), v; is as a result of equation
(2.64) the velocity at the beginning of an intermediate segment ¢. Appropriately, v;
and ﬁg(qgg) are respectively termed the velocity level and the relative design velocity
distribution for an intermediate segment :. Consistent with the approach of avoiding

a forward stagnation point on a segment, it is required that v*(¢) > 0 or
v*(r;b) =uv; + 55((,‘55) >0 (2.65)

The relative design velocity functions 't':g(qg,;) may be piecewise linear, cubic spline,
or analytic functions and thereby offer a great deal of freedom in the design and

especially in the Newton iteration scheme discussed later.

2.1.7.2 Governing Equations for the Inverse Design Problem

Substituting the expressions for v*(¢) and a*(¢), equations (2.60a-d), into the

three integral constraints on P(¢) leads to

aiip+af+a3Kyg +as Ky =b (2.66a)
Qo1fh + Aol + azs Ky + ars K i = by (2.660)
asip + 3B + a3 Ky + ass K g = bs (2.66¢)

Detailed expressions for the coefficients are given in Appendix B.
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Figure 2-7 Splined relative velocity distribution in terms of the circle
coordinate ¢; and 5; for the resulting airfoil.
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It is of interest to note that the integral constraints on P(¢) are much easier
to evaluate than those on Inv’(¢), as done through equations (2.52a) or (2.54) in,
for example, Lighthill (1945a), Glauert (1947), Timman (1951), Nonweiler (1968),
Ingen (1969), Arlinger (1970) and Strand (1973). At the stagnation points, In v, (@)
is singular while the singularities of P(¢) are removable owing to the velocity rela-

tions in the vicinity of the stagnation points. Hence, P(¢) is bounded in contrast
to In v ().

Continuity of P(¢) at the trailing edge gives

ay1ph + et + ags Ky + aus Ky = by (2.66d)

where the coefficients are again given in Appendix B. Continuity between the seg-

ments at ¢,, d», and ¢ requires further that

U2 ]

| cos(41/2 — az))| - | cos(¢1/2 — 1) (2.67a)
¥ _ v+ 3a(d2 =62 — )

| cos(¢2/2 — az))| N | cos(¢2/2 — az) (2.67b)
vy vzt 63(&:3 = ¢3 — &2)

|cos(43/2 — as)| = |cos(¢s/2 — as) (2.67c)

Thus, there are seven equations to satisfy for an airfoil with four segments. Conse-

quently, all but seven parameters can be specified.

Due to the convenient linearity of equations (2.66a-d) with respect to p, 7,
Ky and -I?H, it is natural to select these parameters as four of the required seven
unknowns. Through the continuity equations (2.67a-c), it is easiest to give any
single velocity level, say v;, and from it compute the remaining velocity levels:
v2,v3 and vy. Therefore, a solution to the inverse airfoil problem can be determined

by specifying all of the design variables except the seven which are unknown: pu, I,
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Ky, Kpg, vo, v3 and vy. In summary, all of the design variables (besides €) for a

four-segment airfoil are listed in table 2-1 below.

Table 2-1: Inverse Design Parameters for a Four-Segment Airfoil
i ¢ a*(¢) v ()
1 [0a¢1] (03] vlaw(¢_; ¢TT'>¢S)¢F$K7:U‘7KH)
2 (¢1, ¢2] Q2 vz, 02($2)
3 ($2, ¢3] as v3,v3(d3)
4 [¢3,27I‘] Q4 'U-hw(qs;¢IT'>¢S>¢F7Ka/77KH)

2.1.7.3 Numerical Determination of the Mapping

After having satisfied the integral constraints, the functions v*(¢) and a*(¢)
are known and P(¢) may be formed. Then, through the Poisson integral, Q(¢)
is determined and the airfoil coordinates can be obtained through equation (2.23).
Some discussion on the calculation of Q(¢) from P(¢) is necessary. Many methods
of solution exist in the literature, but the most suitable method is that of Watson
(1945) and Garrick (1952) which was subsequently improved by Eppler (1957) for

the special circumstances of the present inverse formulation.

As an overview, the methods of Watson and Garrick involve first the approxi-
mation of the harmonic function P(¢) by a truncated Fourier series. Then, through
a procedure that amounts to performing two fast-Fourier transforms (Eppler 1990),
the conjugate harmonic function Q(¢) is determined. If P(¢) is smooth, the fit of
the Fourier series is good and the subsequent calculation of Q(¢) is accurate. If
instead P(¢) has sharp corners, that is, a discontinuity in its slope, the fit of the
Fourier series will be poor through the points near the sharp corners and Q(¢) will
show oscillations much like the Gibbs phenomenon. It so happens, as will be shown
later, that P(¢) in the present formulation can have sharp corners, with the one at
the leading-edge arc limit usually having the largest slope discontinuity. To take

into account these sharp corners, P(¢) can be decomposed into the sum of a smooth
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part and a part containing the sharp corners. The conjugate function Q(¢) is then
simply the sum of the conjugate function to the smooth part (obtained numerical-
ly) and the conjugate function to the part containing the sharp corners (obtained
analytically). This is the procedure used by Eppler to account for the sharp corner
at the leading edge. In the present case, a general procedure is used to take into
account all of the sharp corners so as to improve further the numerical accuracy of

the calculation of Q(¢).

To begin with, the harmonic function P(¢) is expressed as

P(¢) = P(¢) + 5(¢) (2.68)

where P(¢) is the smooth part and S(¢) is the part containing the sharp corners.

In order to ensure that P(¢) is smooth the derivative

dP(¢) _ dP(¢) dS(¢)
raial raab (2.69)

must be continuous. Consider a single sharp corner of P(¢) located at ¢; as indi-

cated in figure 2-8. An infinitesimal distance to the left of ¢;, the derivative is

expressed as

dﬁ(qS)) - dP(¢)> T 45(45)) ) (2.70a)

dé ) T T dé dé

while to the right
d¢ d¢ d¢
In order for dP(¢)/d¢ to be continuous through ¢;, it must be true that

dP(¢)\~ _ dP(¢)\™
e ) R ) (2.71)

dﬁ(¢))+ _ dP(¢)>+ ~ d5(¢)>+ (2.700)

or from equations (2.70a,b)

dP(¢)>‘ d5(¢)>_ dP(¢)>Jr d5(¢)>+ (2.72)

dg d¢

d¢

d¢
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p
dP~ dpY
de d

¢

Figure 2-8 Sharp corner of P(¢) located at ¢; and slopes infinitesimally to
the left and right of ¢;.
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Introducing
5(4) = sin(“i’_zd"')‘ (2.73)

gives

%}) :_gcos(‘ﬁ_;%) -~¢-:_g (2.74a)
and

dsw))* k (¢—¢f) _ K (2,745

_— = —cos| — = = . )

do 2 2 Jlies, 2

Thus, the condition for smoothness through the point ¢; becomes, from equations
(2.74a,b) and equation (2.72),
dP(¢)\T dP(¢)\~
_dP(&)\* _ dP(s) (2.75)
do d¢
Considering all sharp corners involves adding more functions of the form of

equation (2.73) to equation (2.68) with the constants k determined by equation

(2.75). Thus, for M sharp corners, it may be written in general that

M
S@) = ki sin(¢ _2"6") ‘ (2.76)
1=1
where
o= MY _ %)_
= i A (2.77)

evaluated at each sharp corner. The location of these sharp corners and the values
of the derivative dP(¢)/d¢ at these locations is determined from equation (2.20)

and equations (2.60a-d) which gives

LPO) - 2 tan(g/2 - a()) - e 2B _pK__ cin
5 2tan(¢/2 o"(¢)) v(9) dé wir(¢) 1+ cos ¢w

(2.78)

0.72K g cosq&—cosés] n o € cos /2
"~ ws(é) | (1 - cosas)? s "~ 2 sing/2
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The first term on the right hand side makes a contribution for each segment, and
the second term only makes a contribution on the intermediate segments for which
9(¢p) is prescribed. The remaining three terms contribute in the recovery region,
both for the upper and lower surface, although only the upper-surface terms are
expressed for brevity. The third term affects the derivative over the entire recovery
region, the fifth only over the closure region, and the fourth only over the finite

trailing-edge recovery region.

From equation (2.21), the conjugate harmonic function is given by

2m _
Q) =5 [ Pw)eot Ly (2.79)
which through equation (2.68) and (2.76) becomes
Lo =8 ki [T (6—\| b—¢
= i P(%) cot 5 d¢+;£ i s1n< 5 ) cot 5 dy
(2.80)
or
M

=Q(9) +>_Ti(9) (281)

=1

Following Eppler (1957), Q(¢) is determined at 2N equiangular values

b=  v=012..,2N-1 (2.82)
from values
P, = P(¢y) (2.83)
by
N-1
Q,=0Q(¢y) = L (Pyyy —Py_,)cot il = odd values only (2.84)
v v N gt v+p v—u 2N, 2 4

The conjugate harmonic functions 7; are given analytically by

Ti(¢) = 5 sin<¢—_2—@> 1nltan(¥>’ (2.85)

™
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which can be evaluated at the values ¢, to give T}, ;. Finally
| M
Q=Q,+> T (2.86)
i=1
which, together with P, , is used to find the airfoil coordinates.

2.1.8 An Example Airfoil

As an example of the method, a simple four-segment airfoil with a cusped trailing
edge is presented. This airfoil and the others that follow in section 2.1.9 are not
intended for any practical application; rather, they merely serve as examples to
illustrate the capabilities of the method. After specifyiﬁg € = 0 to give a cusped
trailing edge, together with everything listed in table 2-1 except the seven unknowns,
equations (2.66) and (2.67) can be solved. The solution yields u, &, Ky and Ky
such that the recovery functions w(¢) and w(¢), plotted in figure 2-9 (a), are
defined completely. Also shown in figure 2-9 (a) are the prescribed relative velocity
functions '52(¢~52) and '53(<;~$3) satisfying the requirement that '51(92;1 = 0) = 0. The
velocity function 172(q-52) is defined by a cubic spline of four points, and '53(({53) is
prescribed as linear. With w(¢), 92(¢2), 93(¢s) and wW(¢) known and vy,vs and
vy found from the solution of the system, the complete design velocity distribution
v*(¢), shown in figure 2-9(b), is obtained. Through equation (2.20), a*(¢) and
v*(¢) are used to form P(¢) which is plotted in figure 2-10. The jumps in a*(4)
which are compensated by jumps in v*(¢), such that P(¢) remains continuous, are
seen in figures 2-9 (), 2-9 (¢) and 2-10. As determined by the method discussed in
section 2.1.7.3, the conjugate harmonic function Q(¢) is found and is also shown
in figure 2-10. Airfoil coordinates are then computed using P(¢) and Q(¢). The
airfoil profile together with the velocity distributions at @ = 0°, 5°, 10° and 15° are

shown in figure 2-11.
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Figure 2-9  Special velocity functions and design velocity and angle of attack
distributions for a four-segment airfoil.

(figure continues)
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Figure 2-9 Continued.
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Figure 2-10 Harmonic functions P(#) and Q(¢).
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Figure 2-11 Airfoil and velocity distributions at a = 0°, 5°, 10°, and 15°.
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To serve as a check on the numerical implementation of the theory, an airfoil
designed by the method can be analyzed for its velocity distributions to see if they
match the velocity distribution used in the inverse method to derive the airfoil shape.
For analysis, the Eppler program (Eppler and Somers 1980a; Eppler 1988, 1990)
is used. The panel method employs parabolically distributed vorticity and satisfies
the boundary conditions at the panel end points with high-order approximations
used for the influence of panel vorticity on itself. To verify the code predictions,
the velocity distribution for a Joukowski airfoil (generated using a circle offset of
p = —0.08 + 20.06) was predicted for « = 6° and is compared with the exact

solution in figure 2-12. Using double precision, the agreement is quite good with

an RMS difference of 0.000449, where RMS = \/Zz\;l(vlz —v3,)?/N. In this case,
vy, refers to the velocity at a point on the Joukowski airfoil, and v,, is the velocity
as predicted by the panel-method analysis. In figure 2-13, the velocity distributions
at o = 0°, 5°, 10° and 15° for the airfoil shown in figure 2-11 are compared with
predictions from the panel method. Again, the agreement is quite good with RMS
differences of 0.000139, 0.000138, 0.000136 and 0.000133 for @ = 0°, 5°, 10° and

15°, respectively.

2.1.9 Example Airfoils with Multi-Dimensional Newton Iteration

Fundamentally, it is required for the inverse problem that the design velocity
distribution v*(¢) and design angle of attack distribution a*(¢) satisfy the integral
constraints, continuity constraints and stagnation point velocity relations. In the
design of any practical airfoil, however, additional requirements are usually imposed.
For example, the airfoil thickness ratio and pitching moment may be prescribed, and
the airfoil certainly must not cross over itself. Also, it may be desirable to specify

the velocity distribution as a function of the arc length s. Furthermore, as discussed



Figure 2-12 Comparison between an exact Joukowski airfoil velocity distribution
and that predicted by the Eppler program for a = 6°.
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Figure 2-13 Velocity distributions as predicted by the Eppler program
and compared with inverse solution for the airfoil shown
in figure 2-11.
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in Chapter 1, it is usually desirable to specify the boundary-layer development in

order to control performance.

For the purpose of discussion, consider the case where a desired zero-lift pitching-
moment coefficient is to be achieved. From equations (2.48) and (2.39b), it is then
necessary to satisfy the equation

4 27

e Ju

Cmy =

P(¢)sin2¢ d¢ (2.87)

where the value of ¢y, is given. This equation represents an additional integral
constraint which P(¢) must then satisfy. Thus, an additional inverse design pa-
rameter (from table 2-1) must be relaxed to satisfy the system of equations which
now includes the integral constraints, continuity constraints and pitching-moment
equation (2.87).

Crossed airfoils are not excluded from the solution in any closed-form mathe-
matical way. Figures 2-14(a,b), for example, show an airfoil which was designed
to have a constant velocity along the forward upper surface at 15° and a constant
velocity along the forward lower surface at 0°. Even though the airfoil satisfies
all the fundamental conditions, the airfoil is crossed. The problem stems from the
high, trailing-edge velocity ratio. By empirical observation, the trailing-edge veloc-
ity ratio of finite-thickness, uncrossed airfoils is always less than one. Many inverse
methods make use of this fact and allow for the adjustment of an inverse design pa-
rameter in order to match a specified trailing-edge velocity ratio. One shortcoming
of this approach is that thicker airfoils generally have lower trailing-edge velocities
than thinner ones, but the airfoil thickness is not known a priori, thereby making
it difficult to preassign the proper trailing-edge velocity ratio. Also, the specifica-
tion of the trailing-edge velocity ratio is not a viable option for the design of airfoils

having a finite trailing-edge angle for which the trailing-edge velocity is always zero.
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Figure 2-14 Example of a crossed airfoil with high trailing-edge velocity ratio
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Besides the value of the trailing-edge velocity ratio, much can be deduced from
the character of the velocity distribution in the vicinity of the trailing edge. Figure
2-15 shows the trailing-edge velocity distribution and the trailing-edge shape for
three, symmetric, 8% thick, cusped airfoils at 5° angle of attack. Only the last
25% of chord is shown, and the vertical y/c-scale has been expanded to five times
that of the z/c-scale. The trend is that the larger the drop in velocity (i.e. pressure
recovery) at the trailing edge, the thicker the airfoil in the vicinity of the trailing edge
(e.g, case a). If there is no drop in the velocity, the trailing edge is very thin (e.g.,
case b). If the velocity shows an increase, the airfoil is usually crossed (e.g., case
¢ and case shown in figure 2-14). While these comments are specific to symmetric
airfoils such as those shown in figure 2-15, the same trends are observed for non-
symmetric airfoils as long as the net velocity drop is considered. For example, if
the velocity decreases on the upper surface by the same amount that it increases
on the lower surface, there is a zero net velocity drop, and the airfoil will in such

instance be thin at the trailing edge.

The trend just identified must be translated into an equation if crossed airfoils
are to be avoided in the design process. The high, trailing-edge velocity ratio
for the airfoil shown in figure 2-14 is produced by the large negative values of
Ky (Kg = —12.62) and Ky (Kg = —16.64) which control the closure recovery
functions w5 (¢) and Eg” (¢). If Ky and Ky are small positive quantities (for
example, 0.2), then the trailing-edge velocity distribution will decrease slightly as
shown in figure 2-15(a). If they are both zero, there will be no decrease or increase
in the velocity as shown in figure 2-15(b). For negative values, the velocity will

increase—figure 2-15 (¢) being a mild case and figure 2-14 (a) extreme.

Practical experience has shown that normal trailing-edge velocity distributions



54

0__0'025_l....lll...||,,..|)(/c

Figure 2-15 Impact of the trailing-edge velocity distribution on the shape
of the trailing edge.
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are determined not so much by the individual values of Kz and Kz but by their
sum Ky + Kpg. If the sum is in the range 0.0 to 0.8, normal trailing-edge shapes are
produced—the smaller the sum in this range, the thinner the airfoil in the vicinity

of the trailing edge. Thus, as in the Eppler method (1957, 1990),
Ks=Ky+Kg (2.88)

serves as a useful equation to control the trailing-edge velocity distribution. Thus,
by specification of K, crossed airfoils can be avoided and a desired trailing-edge

thickness can be achieved.

If an airfoil is to have a specified trailing-edge thickness parameter Kgs and
zero-lift pitching-moment coefficient, the system of equations includes the integral
constraints (three equations), the continuity constraints (four equations for a four-
segment airfoil) and equations (2.87) and (2.88). Since there are now two additional
equations, two more parameters (in addition to , &, Kz, K g and all v;’s except
one) must be identified as unknowns. It might be possible to select parameters from
table 2-1 or introduce new parameters which would allow the system of equations to
be solved directly without recourse to iteration, but, as more ebquations are added
to the system (as will be demonstrated), this rapidly reaches a point of diminishing
returns. It is best to resort immediately to an iterative solution technique. To this

end, multi-dimensional Newton iteration is used.

For a prescribed Ks and ¢, equations (2.87) and (2.88) are represented as

R, =Ks— (KH + FH) (2.89a)
4 27

Ry =cmy— — P(¢)sin2¢d¢ . (2.89b)
¢ Jo

where R; and R, are the residues which are driven to zero by Newton iteration on

parameters U; and U, taken from the inverse design parameters listed in table 2-1.
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For each additional quantity prescribed, there will be an additional residue equation

R; and a parameter U; admitted for iteration. In general, it is desired that
R{U)=0 (2.90)
Taylor series expansion of E(ﬁ) gives

2

8R1" 1 _-,[8°R1™
] + «EU"[ ﬁ} + (2.91)
RlIE

RO = R(U)™ + 5{7{_:
ou
where n is the current solution and n + 1 is the solution after the step §U. Neglect

of all terms higher than first order and taking fi(ﬁ)“"’l = 0 as desired gives

OR1™ - Lo
| 8T = —R(T)" 2.92
25010 =

This may be solved to give §U which may then be used to update the solution
G+t = 7 4 w60 (2.03)

where w is a relaxation factor to be discussed later. Based on this solution vector
U™t1, the residue R(U)"*! can be evaluated to see if it is within a prespecified
tolerance. If R(U)™! is not within the tolerance, U™ and E(U)" are replaced by

Un+! and R(U)™*! and the process is repeated until the tolerance is achieved.

The iteration process begins by adding a small perturbation sequentially to
each of the selected inverse design parameters used for iteration. The basic inverse
equations (2.66) and (2.67) are then solved after which the residues are evaluated.
The change in the residues is monitored to form the Jacobian aﬁ/aﬁ which is then
used to find the step size §U. If the Newton scheme attempts to take a step §U
which is too large, the convergence of the solution can be disrupted. To prevent this

from happening, a maximum step size for any of the unknowns U can be preset.
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If any of the predicted step sizes at any point in the iteration exceeds a preset
maximum (a maximum which is determined through experience with the method),
then a fractional step (w 5(7) is taken to avoid exceeding a maximum. Another
detail is that in the design of a new airfoil, the iterative process is taken in stages.
In a typical case, K is first satisfied in order for the airfoil to be uncrossed. Then
Cm, 1s sometimes specified to bring the airfoil into a normal range. After this, any

additional Newton equations may be added in a logical order.

The Newton iteration process is depicted schematically in figures 2-16 (a—c). The
basic approach is shown in figure 2-16 (a). Figure 2-16(b) details the method used

to determine the Jacobian, and figure 2-16 (¢) details the check for convergence.

To demonstrate the capability of the Newton iteration procedure, an airfoil is to
be designed such that Ks = 0.5 (to produce an uncrossed and normal trailing-edge
shape), ¢m, = —0.2 and t/c = 15%. The airfoil shown in figure 2-14 is used as
the first guess in the Newton iteration procedure. As mentioned, the process is
taken in stages, the first of which is to satisfy Ks = 0.5 so that the airfoil becomes
uncrossed. This is done by iterating on the leading-edge arc limit ¢, to result in
the airfoil shown in figure 2-17(a). Next the arc limit ¢, and velocity level v; are
iterated together to produce an airfoil with Ks = 0.5 and ¢y, = —0.2, as shown in
figure 2-17 (b).

Before the desired maximum-thickness ratio t/c is achieved, some remarks should
be made regarding the choice of the parameters ¢, and v; used for iteration. The
value of the leading-edge arc limit ¢, is related indirectly to the range over which the
leading-edge stagnation point moves for normal angles of attack. It is well known
(e.g., Eppler 1957, 1990; Liebeck 1990) that the leading-edge stagnation point has a

dramatic effect on whether or not the airfoil crosses. Consequently, ¢, is selected as
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Figure 2-17 Airfoils produced by specifying (a) Ks = 0.5, and (b) Ks = 0.5,

Cmo = —0.2.
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the parameter to control the trailing-edge thickness parameter Ks. The effect of v;
on the pitching-moment can be explained by realizing that the adjustment of v;, in
turn, affects all the velocity levels vy, v3 and vy through equations (2.67a-c). That
is, iteration on the one prescribed velocity level implies having no control over the
level of the velocity anywhere. Low-pitching moment airfoils (e.g., Liebeck 1970)
are characterized by having a high upper-surface velocity along the forward part
of the airfoil, while on the other hand, high-pitching moment airfoils (e.g., Somers
1992) have, in comparison, a relatively low upper-surface velocity along the forward
part of the airfoil. This connection between the velocity and the pitching moment
is employed bj iterating on the one prescribed velocity level to achieve a desired

pitching-moment coefficient.

In order to obtain the desired thickness ratio of 15%, it is necessary to identify
an inverse design parameter which affects the thickness. For the airfoil shown in
figure 2-17(b), the forward upper-surface and lower-surface velocity distributions
were prescribed to be constant for angles of attack of 0° and 15°, respectively.
An increase in the angle of attack above 15° will produce an increasingly severe
suction peak on the upper surface at the leading edge which will eventually result
in flow separation and stall. Likewise, a decrease in the angle of attack below 0°
will produce a suction peak on the lower-surface leading edge, giving rise to flow
separation and shortly thereafter negative stall. In approximate terms, the airfoil
has a useable operating range from 0° to 15°. A decrease in the upper-surface
design angle of attack by 2° to 13° and an increase in the lower-surface design angle
of attack by 2° to 2° (while still satisfying Ks = 0.5 and ¢,y = —.02) results in
the airfoil shown in figure 2-18.  From the foregoing discussion, it follows that

this new airfoil will have a useable range from only 2° to 13°. By comparison, this



Figure 2-18 Airfoil derived from that shown in figure 2-17(5) with different
design angles of attack for the upper and lower surfaces.
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new airfoil has a narrower operating range and is thinner than the one shown in
figure 2-17 (5)—26.4% vs. 32.4%. Consequently, the design angles of attack (which
determine the operating range) may be used for iteration to achieve the desired
maximum-thickness ratio. In particular, the thickness ratio is obtained by adding
an increment éa to the upper-surface design angles of attack and subtracting the
same increment from the lower-surface design angles of attack. With this approach,
the 32.4% thick airfoil shown in figure 2-17 (b) may be modified by iteration on the
design angles of attack in the opposite fashion as mentioned in order to produce the

desired 15% thick airfoil as shown in figure 2-19.

The Newton iteration procedure is also employed to locate a segment junction
in z;/c and to allow specification of the design velocity distribution in arc length s.
In order to specify an z;/c location (for instance, the beginning of the recovery), the
corresponding arc limit ¢; is used for iteration. Explicit specification of the velocity
distribution v(s) for a segment would be inconsistent with the inverse formulation
as presented b[equations (2.60a-b)]. Equations (2.67a-c) determine the value of
the velocity at the beginning of each segment so it cannot be directly prescribed.
Furthermore, the arc length s along a segment is determined as part of the solution.
It is consistent, however, to prescribe the relative design velocity ¥;(3;) subject

to the condition %;(5; = 0) = 0 since ¥;(¢; = 0) = 0. A desired distribution
¥4(5;) is obtained through iteration on ﬁl(qzl) The distribution ;(5;) is satisfied at
collocation points in @; for the particular segment as indicated in figure 2-7. Each
collocation point thereby gives rise to another equation in the Newton system. As
a practical matter, the relative arc length §; is normalized by the airfoil chord.

The collocation points defining '5,;((;31-) and employed in the Newton iteration are

specified as a percentage of the length of the segment ¢; — ¢;_1. This prescription



Figure 2-19 Airfoil with Ks = 0.5, ¢, = —0.2, and t/e = 15% at a = 9.96°
and 5.04°.
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on a percentage basis is necessary since iteration on an arc limit ¢; or ¢;—; will

change the length of the segment 1.

Another example is presented to illustrate the capability of prescribing the chord-
wise locations z;/c and velocity distribution 9;(5;). For the second and third seg-
ments, it is desired that ©5(52) = —0.505, and v3(53) = 0.2553, respectively. The
upper—surface and lower-surface recovery are prescribed to begin at 50% and 40% of
chord, respectively. The airfoil is further constrained by specification of Ks = 0.3,
¢m, = —0.05 and t/c = 25%. Lastly, the trailing-edge angle is specified to be 10°
or € = 1/18. Of course, since € appears explicitly in the equations, achievement
of a particular trailing-edge angle does not require any iteration. To meet these
design goals, iteration is performed on the limits ¢;, @2, @3, the velocity level v,
the design angles of attack a; through éa (as previously described) and the relative
design velocity distributions 75(¢s) and #3(¢s). Figures 2-20(a,b) show the final
velocity distributions at the resulting design angles of attack of 1.20° and 11.80°.
As expected, the finite trailing-edge angle leads to zero velocity at the trailing edge.
As depicted in figure 2-20(b), showing v(s), the desired relative velocity distribu-
tions ¥2(32) and 3(53) are achieved. The arc length and relative arc lengths are
normalized by the airfoil chord giving sm,4z/c = 2.1. In figure 2-21, the airfoil pro-
file and velocity distributions show that the desired recovery locations are obtained.

Finally, Ks, ¢, and t/c also match the design specifications.

Some further remarks should be made regarding the choice of the inverse design
parameters used for iteration in order to achieve a set of airfoil characteristics. In the
design of any new airfoil, K5 is usually prescribed to produce an uncrossed airfoil.
As in the examples presented, the leading-edge arc limit can usually be iterated

to drive Ks to the desired value. Alternatively, however, the single prescribed
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Figure 2-20 Velocity distributions at a = 1.2° and 11.8° as a function of
(a) ¢ and (d) s/c.

(figure continues)
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Figure 2-20 Continued.



Figure 2-21 Airfoil and velocity distributions at @ = 1.2° and 11.8°.
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velocity level or any, all, or part of the design angles of attack may be iterated
in an attempt to achieve the desired Ks. Options are also included to change
the slope of 'Z);(g{)i) along a segment or several segments. Iteration for prescribed
thickness ratio or pitching moment is usually successful through adjustments in
the velocity level or design angles of attack as shown. Several other options are
available, however. The use of #;(¢;) to achieve a given #;(5;) is necessary. Also, if
a segment junction is to have a specified z;/c location, the corresponding segment
arc limit ¢; must be iterated. As a final remark, if the specified design requirements
are realistic, convergence is usually assured so long as an appropriate set of inverse
design parameters is used for the iteration. In this regard, going in stages, starting
with the achievement of the desired Kg, then ¢, , etc., often provides valuable

insight into potentially conflicting design requirements and helps to determine which

inverse design parameters are best suited for iteration.

2.2 THE VISCOUS DESIGN PROBLEM

2.2.1 Formulation of the Problem

Several schemes have been devised to achieve a desired velocity distribution,
but, to achieve a desired boundary-layer development, there are only two common
approaches. One approach (e.g., Liebeck 1976; Henderson 1978; Goettsching 1988)
is to use an inverse boundary-layer method to determine the velocity distribution
which yields the desired boundary-layer development, typically the shape-factor or
the skin-friction distribution. The resulting velocity distribution is then used as
input to a potential-flow inverse method which provides the corresponding airfoil

shape.
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The disadvantage of this method is that only single-point design problems can be
handled directly. Whether or not the resulting airfoil meets the multi-point design
requirements is determined through post-design analysis. If discrepancies do exist,
part of the velocity distribution is modified judiciously until the desired goals are
achieved eventually. Another difficulty arises when the boundary-layer equations
and the auxiliary equations may not be expressed in inverse form, for instance, if
it were desired to prescribed the distribution of the linear stability amplification

factor n.

Another approach, that may be employed using almost any inverse airfoil method,
dispenses entirely with the inverse boundary-layer solution as a driver to the inverse
airfoil method. In an interactive, iterative manner, all of the design goals are met by
adjusting the velocity distribution provided as input to the inverse method. Based
on feedback from successive analyses and with some experience, the velocity distri-
bution may be changed in the direction necessary to bring the airfoil closer to the

desired goals.

It is instructive to illustrate this technique within the framework of the inverse
method described in section 2.1. For this example, five segments are used as depicted
in figure 2-22. Attention, however, is focused on the third and fourth segments (on
the lower surface) along which the velocity distribution v*(¢) is prescribed for the
design angle of attack of 5° [figure 2-23 (a)]. After the specification of the remaining
inverse design parameters, the inverse problem is solved to give the airfoil shape.
The velocity distribution may then be plotted as a function of the arc length s as
shown in figure 2-23 (5). Through the use of a direct boundary-layer method, the
shape-factor distribution H;2(s) may be computed and then plotted in the relative

coordinate system consistent with the prescribed velocity distribution as shown in
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Figure 2-22 Circle divided into five segments and mapped to a five-segment
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figure 2-23(¢).

Now suppose that one of the design goals is to have Hy; = 3 for the fourth
segment at the design angle of attack @ = 5°. As shown in figures 2-24(a,b),
the relative velocity at the end of the third segment may be adjusted to achieve
the desired initial condition: H;; = 3. After having achieved this desired initial
condition, attention is turned to the adjustment of the relative velocity distribution
on the fourth segment so that H;, does not change from the initial condition. Put
differently, 774(954) is adjusted such that ﬂ124(§4) = 0. Although it cannot be seen
from figures 2-25 (a,b), the solution fq(gz;*) for which 127124(54) = 0 leads to a slight
change in the initial condition. If necessary, this process may be repeated until
the shape-factor distribution for the fourth segment is within a set tolerance of the

desired value of 3.

From this simple example emerges the basis of a practical, viscous inverse de-
sign method. The velocity distribution (defined by the inverse design parameters)
is iterated not to achieve a desired velocity distribution v(s) but rather to obtain
a desired boundary-layer development. One step in this process involves the per-
formance of several direct boundary-layer analyses to determine the residues in the

Newton equations.

2.2.2 Direct Boundary Layer Method

As an overview, once the airfoil is designed through the potential-flow inverse
design method described previously, the boundary-layer development may be de-
termined along each segment of the airfoil at the design condition for which some
boundary-layer development is prescribed. The results of these calculations are

then used to determine the residues necessary for Newton iteration. Depending
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Figure 2-24 Changes in the shape-factor distribution as a results of varying
the slope of the velocity distribution on the third segment.
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Figure 2-25 Changes in the shape-factor distribution as a result of varying the
velocity distribution along the fourth segment.
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on the sophistication of the design approach and the design philosophy, a single
design session lasting, say, less than an hour could easily involve over 100 direct
boundary-layer analyses. In this case, a rapid boundary-layer analysis method is
an essential ingredient for efficient interactive design. This requirement is satisfied
presently through the use of an integral boundary-layer method, in particular, that

based largely on the work of Eppler (1963a).

To keep the computational time to a minimum, displacement-thickness effects
are ignored and the prescribed boundary-layer developments are limited to those
corresponding to attached flows. These restrictions pose no real practical limita-
tions, and the use of an integral boundary-layer method is the only viable option,
yet it is certainly not an oversimplification. Airfoils in use on wings, tail surfaces,
propellers, etc. operate for the most part as intended in efficient conditions—those
for which the boundary layers are thin and attached over most of the surface. Un-
der these circumstances, the displacement thickness has only a small impact on the
outer potential flow and hence may be neglected without causing any appreciable
discrepancies between predicted and measured performance. Solutions of the inte-
gral boundary-layer equations, although rapid, require careful consideration with
regard to the choice of the laminar and turbulent boundary-layer correlations if
the predicted boundary-layer development is to be an adequate representation of
the boundary layer as governed by the Prandtl boundary-layer equations or, more

generally, the Navier-Stokes equations.

For the laminar boundary layer, the Falkner-Skan family of profiles are exact
solutions to the boundary-layer equations. Laminar boundary-layer solutions of the
integral boundary-layer equations based on correlations derived from these similar

profiles are found to be in close agreement with both finite difference solutions of
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the boundary-layer equations (Drela 1986) and experimental results. For the tur-
bulent boundary layer, no exact solutions to the boundary-layer equations exist.
Consequently, the validity of any proposed turbulent boundary-layer correlation is
determined ultimately by a comparison with experimental results. The need for
great accuracy in the boundary-layer closure correlations is somewhat reduced by
the fact that they need be only accurate in the present case for incompressible
boundary layers found typically in flows about airfoil shapes. The closure correla-
tions used currently are those due to Eppler (1963a). For airfoil flows, Eppler has
derived turbulent closure correlations in terms compatible with the solution of the
integral boundary-layer equations. These correlations were derived in part based
on the work of Weighardt (1948), Ludwieg and Tillmann (1949) and Rotta (1952).
As given by Eppler, the extension of this early work is based on empirical results

and asymptotic methods.

The prediction of transition from laminar-to-turbulent flow plays a vital role in
the determination of the ultimate success of the boundary-layer method as a whole.
Two different approaches have been implemented in the present work—an H-R
method and an e™ method based on linear stability theory. Fortunately, the reliance
on an accurate method of transition prediction is mitigated by the fact that on many
airfoils there is a short region over which the adverse pressure gradient changes
from mild to severe. Any transition method, no matter how sophisticated, can
hardly miss the prediction of transition over such a short distance. The situation is
complicated and accuracy is called into question when the pressure gradient is mild
(either favorable or adverse) or when laminar separation takes place before turbulent
transition is predicted. These are concerns involved mainly in low Reynolds number

airfoil applications typical of sailplanes and model aviation. In the case of laminar
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separation, transition usually takes place rapidly with reattachment ensuing shortly
thereafter. Special considerations are necessary to treat the development of the
so-called laminar separation bubble which forms between laminar separation and
turbulent reattachment (e.g., Drela 1989; Dini 1990). Careful account of the laminar
separation bubble goes beyond the scope of the present investigation. If laminar
separation is predicted before transition, transition is assumed to take place at that
point—an assumption which is a close approximation to the true physics of the flow
so long as the bubble is short. More details of the transition prediction methods

are discussed later.

It has been well-established that the combined method gives good predictions of
airfoil performance (e.g., Eppler 1963b; Maughmer and Somers 1989; Somers 1992).
Improvements to the boundary-layer method involve the modelling of the laminar
separation bubble (if present), the incorporation of a displacement thickness itera-
tion (Eppler and Somers 1980b), the extension of the correlations to compressible
flow (Drela and Giles 1986, 1987) or the solution of the boundary-layer equations by
a finite difference method. While each of these may be viewed as an improvement to
the analysis method, they may simultaneously be viewed as a hindrance which im-
pedes the design process by adding to the level of computation effort which curtails
rapid feedback. As stated, rapid feedback is a necessity in design, and the addition
of the Newton iteration, while simplifying the work of the designer, may already be
viewed as impeding the attainment of this requirement. Further enhancements to

the analysis method will await improvements in computer speed.

2.2.2.1 Integral Boundary Layver Equations, Closure Correlations

and Transition

The integral momentum and energy equations are used in their standard form,
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dﬁg 52 dv
‘E = —(2+H12);Eg + Cf
d63 363 dv
A T

with closure correlations expressed functionally by

H,, = Hy,(H;,)
Cy= cf(levRﬁg)

cp = cp(H12, Rs,)
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(2.94a)

(2.94b)

(2.95q)
(2.95b)

(2.95¢)

for both the laminar and turbulent part of the boundary layer. In particular, for

the laminar boundary layer, the Falkner-Skan family of profiles is used to give for

attached flow:

Hi» = —5.967105263 4 6.578947368 H 3>

— 1/43.2825(0.907 — H3z)2 — 16
and for separated flow:

Hip = —14.9375 + 12.5H3>

—4/156.25(1.195 — H3)2 — 16

*

_ E
o= R’U{SZ

_ HspD*
= Rvés

where

2
—0.067 + 0.01977%, Hy, < 7.4

—~0.067 +0.022(1 — -25)",

Hi, >74

(2.96a)

(2.96b)

(2.96¢)

(2.96d)

(2.97a,b)
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0.207 + 0.00205(4 — Hy5)*°, H;p <4

D* = (4 Hp)? (2.98a, b)

0.207 — 0.003 . Hiyp>4
1+ 0.02HZ, =

These correlations, due to Drela and Giles (1986), give essentially the same cor-
relations as those due to Eppler (1963a). The difference is that these correlations
are valid beyond the point of laminar separation. Although only attached flows
are considered in the design method, the need for correlations beyond the point
of laminar separation (Hjp > 4) will be discussed later in section 2.2.2.2. It will
also be explained there that the shape-factor correlation for separated flows, equa-
tion (2.96b), must be modified for incorporation into the Newton solution. For the

turbulent boundary layer, the correlations developed by Eppler (1963a) are used as

11H35 4+ 15

Hyp=——— 2.99
127 18H,, — 59 2:093)
c; = 0.045716[(H12 — 1)Rs,] ™ "**2exp(—1.26 H1») (2.99b)
ep = 0.0100[(Hyz — 1)Rs, ] 7/¢ (2.99¢)

where it is assumed that turbulent separation takes place when Hj3, = 1.46.

For transition, either the short-cut Hj3,-Rs, method of Eppler (1963a, 1969,
1990) or the e” method of Dini, Selig and Maughmer (1991) is used. Alternatively,
transition may be fixed at a point to model transition by a trip strip. A discussion of
the ng-R52 method is left for Appendix B in which the transition method is used to
aid in the design of the NASA NLF(1)-0115 airfoil for general aviation application
(Selig, Maughmer and Somers 1990). It should be noted that this airfoil was not
designed using the current inverse design method as it was not developed fully at
that time. In section 2.2.4, the present e™ method is used in the design of an airfoil,
although the airfoil is not intended for practical application. A detailed discussion

of the present e™ method is given in Dini, Selig and Maughmer (1991). Briefly,
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the linear stability amplification rates over a range of Falkner-Skan profiles have
been calculated for a selected range of frequencies at Reynolds numbers up to those
typically found on airfoils in application. In the analysis of an airfoil boundary
layer via the integral boundary-layer equations, the database of the amplification
rates is accessed to simultaneously track the growth of the amplification factors for
several frequencies. Based on the envelope of these curves, each corresponding to a
different frequency, the envelope may be calculated to give n(s). When n(s) reaches

a certain value, typically n = 9, transition is assumed to take place.

As a test case, the amplification factor n was evaluated for a Blasius boundary
layer at the dimensionless frequencies of 0.000100, 0.000075 and 0.000050 corre-
sponding to those analyzed by Jordinson (1970). Here the reduced frequency F,
shown in the figure, is 27 fv/v? where f is the disturbance frequency, v the kine-
matic viscosity and v the boundary-layer edge velocity. As seen in figure 2-26, the

comparison indicates that the method does give the proper growth for n vs. Rs, .

2.2.2.2 Solution Procedure

Equations (2.94a,b) are integrated with a second-order accurate Runge-Kutta
scheme for the upper-surface and lower-surface boundary layers from the stagna-
tion point to the trailing-edge, with the potential-flow velocity distribution used as
the boundary-layer edge velocity. The stagnation-point conditions, that is, initial
conditions on é; and 3, are obtained through an asymptotic analysis procedure sim-
ilar to that given by Eppler (1963a). By the use of equations (2.96¢,d), equations

(2.94a,b) are expressed alternatively as

déy 6o dv e*
=@ E) T e (2.100a)
dés _ 383 dv  HypD (2.100)

ds = v ds  Ruvés
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Figure 2-26 Jordinson (1970) amplification factor curves as compared with
present results for the Blasius boundary layer.
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Equation (2.100a) will be considered for asymptotic analysis first.

Near the stagnation point using the first term of the Taylor series, the velocity

may be approximated by
dv

= As— 2.101
v Sd.s ( )

Substitution of equation (2.101) into (2.100a) gives

As®2 _ (91 Hip)hy + — (2.102)
d..‘j v
Bof
ds

With justification given later, it is assumed that, near the stagnation point, dé,/ds

is negligible. Making this assumption gives

*

(2 -+ H12)52 = - (2103)

dv
RZS*CSQ

or

By = = - (2.104)
v
(2 + Hl?)RE

The Reynolds number and the velocity gradient are known. Thus, from equation
(2.104), the stagnation-point momentum thickness é; may be found so long as the

shape factor His is known at the stagnation point.

The stagnation value of H;, is obtained through both the asymptotic form of
the momentum equation (2.104) and the energy equation. The use of expression

(2.101) in the energy equation (2.1005) gives

As— = =363 (2.105)
’ RZ s
ds °
Again, with later justification, dé3/ds is assumed to be negligible, giving
363 = Al (2.106)
r% s,

ds
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Division of equation (2.106) by (2.103) yields,

which is a single equation for the value of H;, at the stagnation point. The solution
of this equation gives Hi> = 2.24009159 which, when used in equation (2.104),

provides the initial condition for the momentum thickness, that is,

1

5, = 0.290352908 (2.108)

dv
R—
ds
Through equation (2.96a), with Hy, = 2.24009159, it is found that H3, = 1.62008219

at the stagnation point. Thus, since H3o = é3/62, the initial condition on the energy

thickness is given by

53 = 1.62008219 6, (2.109)

Justification for this asymptotic procedure at the stagnation point is explained
as follows. From equation (2.104), it is indeed true that dé,/ds = 0 so long as
dH15/ds = 0. Proof of this comes from equation (2.107) which shows that Hi, is
constant or dHy2/ds = 0 if dé3/ds = 0. From the correlation (2.96a), dH;5/ds =0
implies that dHjs/ds = 0. Since dH3y/ds = (65 )d63/ds — (63652 )d6, /ds together
with dés/ds = 0 and dHsz/ds = 0, it must in fact be true that dé;/ds = 0.
Consequently all the assumptions are consistent, and equations (2.108) and (2.109)

represent a valid asymptotic solution.

Since only attached flows are considered, a special problem is encountered if, at
somé point in the Newton iteration, laminar separation is reached before transition.
An excursion of this sort is entirely conceivable even though the final boundary-
layer development will be attached along the design segment at the prescribed

design condition. Conventional integral boundary-layer solution techniques at the
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point of laminar separation switch from a treatment of the velocity as the inde-
pendent variable to its treatment as a dependent variable; that is, it follows from
the solution. What is given instead of the velocity is another variable, such as the
shape of the separation streamline (Ingen 1975) or the distribution of the shape
factor (e.g., Dini 1990) which approximates the development of the ensuing laminar
separation bubble. The integral boundary-layer equations are then solved in an
inverse mode. An entirely different approach is to solve the problem through the
inverse boundary-layer equations by specifying a boundary-layer property and cal-
culating the corresponding boundary-layer edge velocity (e.g., Cebeci 1976; Stock
1988; Whitfield et al. 1982).

The need to approach the solution in either of these two ways is guided not only
by physical observation, in that it would be improper to give the potential-flow
velocity distribution beyond separation, but also by clues found in the governing
equations. The shape-factor correlations (2.96a,b) are only valid for H3, > 1.515
whether or not the flow is attached or separated. Attempting to solve the integral
boundary-layer equations beyond the point of separation with a boundary-layer
edge velocity given by potential-flow theory will yield a shape factor H3s < 1.515

which is not within the bounds of the correlations.

To circumvent this difficulty and to integrate in the direct mode beyond the point
of laminar separation, the present method replaces equation (2.965) for separated

flow with a fictitious shape-factor correlation given by

Hi, =7 v/1.515 — H3s + 4, His < 1.515 (2110)

This equation merely serves as a means to continue in the direct mode beyond lam-
inar separation without having to resort to an inverse boundary-layer method. Of

course, the solution beyond the point of laminar separation will no longer be a valid
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boundary-layer development. Nevertheless, the final solution after iteration will
yield the desired, i.e. prescribed, attached boundary-layer development for which

the correlations are still perfectly valid.

As a check on the method, the airfoil shown in figure 2-27 was analyzed at
R =1 x 10° and @ = 10° by the present computer program and the program
discussed in Eppler (1988). A comparison of the predicted shape-factor development
is shown in figure 2-28. Slight discrepancies, largest near the stagnation point, are
most likely due to slight fluctuations in the velocity distribution computed by the
panel method as compared with the velocity distribution used as input to the present
inverse method. Nevertheless, the agreement is excellent, not only for the shape-

factor development (as shown), but also for the other boundary-layer variables.

2.2.83 Multi-Dimensional Newton Iteration in Viscous Design

In the example illustrated in figures 2-22 through 2-25, the shape factor H» at
the beginning of the fourth segment (s = s3) is specified as 3. This value is obtained
finally by the adjustment of the slope d53/d¢;3 through the specification of relative
design velocity distribution at the end of the third segment and assuming a linear
variation along the segment. In terms of the Newton iteration scheme dv;/ dos

becomes the unknown in order to satisfy the Newton equation
dvs/dps = 0= His(ss)—3 (2.111)

where the notation ‘=’ means that this inverse design parameter is used for iteration
and has a first-order effect on the corresponding Newton equation. It further serves

as an aid in keeping an equal number of equations as unknowns.

For the fourth segment, the relative design velocity distribution #4(¢) is ad-



Figure 2-27 Airfoil used for a check on the boundary-layer analysis method.
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Figure 2-28 Comparison between the shape factor (Hj,) distribution predicted
by the present boundary-layer analysis program and the Eppler
program for the airfoil shown in figure 2-27
at R=1x 10° and a = 10°.



90

justed such that ﬁ124(§4) = 0, that is, through Newton iteration
5.(¢s) = 0= Hip,(54) (2.112)

The numerical problem, however, must be discretized for incorporation into the
Newton system. The design velocity distribution 1'4(@) is defined by a desired
number of moveable spline supports as shown in figure 2-7. For the three nodes

shown, the following three equations must be satisfied.

54(ds = ¢}) = 0=Hi (5 = 5) (2.113a)
54(fs=¢2) = 0=Hp, (5. =352) (2.1135)
ti(ps=¢3) = 0=Hpp, (5 =35) (2.113¢)

The superscripts indicate the index of the nodes in terms of the arc limit ¢; and

the corresponding nodes in 354.

As discussed in section 2.1.9, an arc limit ¢; between two segments can be

iterated to correspond to a specified z;/c (or s;/c) location as
¢i = O=zi/c—p (2.114)

where p is the value of the generic desired parameter. More generally the arc limit
may be adjusted so that a specified boundary-layer property is reached at that
location. For example, ¢; may be iterated to correspond to the point where the
linear stability amplification factor is a value of 9 for a given operating condition,
le.

¢ = 0=n(s)—9 (2.115)

The relative design velocity distribution for a segment may be used to control

the relative boundary-layer shape-factor distribution as previously mentioned, the
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relative velocity distribution in §; or any one of another desired distributions. For
example, either the local geometry may be specified, the n-development, or a curve

in the H3s-Rs, diagram used in the Epp<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>