
The Pennsylvania State University 

The Graduate School 

Department of Aerospace Engineering 

MULTI-POINT INVERSE DESIGN OF ISOLATED AIRFOILS 

AND AIRFOILS IN CASCADE 

IN INCOMPRESSIBLE FLOW 

A Thesis in 

Aerospace Engineering 

by 

Michael Scott Selig 

@1992 Michael Scott Selig 

Submitted in Partial Fulfillment 
of the Requirements 

for the Degree of 

Doctor of Philosophy 

May 1992 



We approve the thesis of Michael Scott Selig. 

-

~ . I ~ • Z 
Associate Professor of Aerospace Engineering 
Thesis Advisor 
Chair of Committee 

Lyle N. Long 
Assistant Professor of Aerospace Engineering 

Philip J. Morris 
Boeing Professor of Aerospace Engineering 

Dennis K. McLaughlin 
Professor of Aerospace Engineering 
Head of the Department of Aerospace Engineering 

Date of Signature 

.3) II 
I 



lll 

ABSTRACT 

This thesis describes a multi-point inverse design method for airfoils and one 

for cascades. In the present sense, inverse design is taken to mean the problem of 

finding the shape which corresponds to the desired set of aerodynamic and geometric 

characteristics . These include the pitching moment , maximum thickness ratio , part 

of the velocity distribution or boundary-layer flow physics, for example, the shape­

factor , skin-friction or linear stability amplification factor distribution . Specifically, 

the airfoil or cascade blade to be determined is divided into a desired number of 

segments along each of which either the desired velocity distribution or boundary­

layer development is prescribed together with , if desired , the maximum thickness 

ratio, etc. The solution is formulated through the use of conformal mapping and a 

direct integral boundary-layer technique resulting in a system of nonlinear equations 

which are solved through multi-dimensional Newton iteration. It is shown that 

certain integral constraints , continuity constraints and stagnation point velocity 

distribution relations must be satisfied in order for the inverse problem to be well­

posed. The satisfaction of these conditions may be handled conveniently. This 

makes the practical application of the method feasible . Several example airfoils and 

cascades are presented to illustrate the two inverse methods. 

A solution to the direct analysis problem for the velocity distributions about air­

foils and cascades is also discussed. The current approach to both analysis problems 

differs significantly from the standard approaches such as those based on Theodor­

sen 's method. The airfoil or cascade is mapped to the circle by one transformation 

that is expressed in derivative form so that the velocity distribution follows directly. 

Also , an exact solution to the flow through an infinite cascade is presented based on 

a mapping which has close ties to the Joukowski transformation. As compared with 
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Gostelow's method, exact solutions can be obtained in a straightforward way. Fi­

nally, extensions of the theory to the inverse design of radial cascades, semi-infinite 

bodies and channels are discussed briefly. 
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Chapter 1 

INTRODUCTION 

The purpose of this thesis is to describe the development of a practical inverse 

design method for airfoils and one for cascades in incompressible flow. To place the 

present work in perspective, it is helpful to start by discussing the state of affairs 

at the Langley Memorial Aeronautical Laboratory in the early 1930s. Eastman 

N. Jacobs and his co-workers had just finished work on a systematic, empirical 

approach to airfoil design and development (Jacobs, Ward and Pinkerton 193S) , but 

the tremendous practical implications of improvements in aerodynamic efficiency 

attainable through extended runs of laminar flow continued to spur interest in 

airfoil research. 

This research into laminar flow airfoils developed along two paths. First, what 

type of velocity distribution would give rise to sustained runs of laminar flow , and, 

second, how might this velocity distribution be transformed into an airfoil shape. 

Only after attending the Fifth Volta Congress in Rome and having been inspired 

by discussions with B. Meville Jones and Sir Goeffrey I. Taylor did Jacobs realize 

that laminar flow would probably be sustained by a continuous run of increasing 

velocity (Hansen 1987). With regard to the latter question, that of how to transform 

this velocity distribution to an airfoil shape, Jacobs thought that Theodorsen 's 

method for airfoil analysis (Theodorsen 1931) could be used as the basis of the 

design method by inverting the analysis process. With some contributions made by 

Theodorsen and Garrick (1933), the approach proved possible and eventually lead 

to the development of a series of low-drag laminar-flow airfoils, namely the NACA 

6-series airfoils (Jacobs 1939) that are still applied today. Jacobs's design method, 
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although crude by present standards, was the first of what have come to be known 

as inverse airfoil design methods-methods which form the basis of modern airfoil 

design methodology. 

Surprisingly, the inverse approach of Jacobs was initially received by considerable 

skepticism among the group of theoreticians at Langley, and, even after it proved 

successful, it was never fully appreciated. Ira H. Abbott who worked with Jacobs at 

the time and who later took part in compiling and publishing the airfoil work done 

at the NACA (Abbott, Von Doenhoff and Stivers 1945; Abbott and Von Doenhoff 

1959) said (Abbott 1980): 

We were told that even the statement of the problem was mathematical nonsense 

with the implication that it was our ignorance that encourages us. (pp. 23-24) 

In the mind of E. I. Garrick, this view had hardly changed when he later wrote 

(Garrick 1952): 

In the opinion of the writer several difficulties arise or exist in defining this 

problem to satisfy both the mathematician and the aerodynamicist. For one 

thing, attempts have not been successful in making precise statements of the 

problem in regard to uniqueness, closure, proper trailing edge, leading edge 

contours, avoidance of grotesque nonstreamline figures most likely to be subject 

to separated flow, or of no physical significance as figures eight (or worse). For 

another, the prescription of pressure distributions with respect to a reference 

chord leads to nonuniqueness; and prescription with regard to normals to the 

boundary surface leads to undefiniteness, since the physical boundaries are being 

sought. Another difficulty is the fact that our insight and knowledge of flow 

behavior are not developed to the point that an exactly defined desirable pressure 

distribution can be specified. (p. 145) 
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Predictably, these attitudes did not foster continued growth in airfoil research at 

Langley as high-speed aerodynamics came into the forefront in the 1940s and 1950s. 

Interestingly, Barger (1974, l975a,b) in a series of NASA reports extended the 

inverse method of Jacobs, but it was never received with much enthusiasm. Other 

more powerful methods had come into favor. 

These more powerful methods were based on conformal mapping (like Jacobs's 

method) and had their origin in Europe, notably Mangler (1938) in Germany and 

Lighthill (1945a) in Britain. It is not clear if Jacobs's work had any direct impact 

in these developments; chances are it did not since Jacobs never fully published 

his approach and only few details exist (Theodorsen and Garrick 1933; Theodorsen 

1944). These new methods of Mangler and Lighthill showed clearly for the first 

time that the velocity distribution specified around the airfoil could not be entirely 

arbitrary. Specifically, they showed that the velocity distribution had to satisfy 

three important integral constraints: one in order to guarantee compatibility with 

the freestream velocity and two in order to ensure closure of the airfoil profile. 

While these theories did much to dispell doubts about the theoretical soundness of 

the inverse approach, practical application was hampered severely by the lengthy 

calculations involved in obtaining the final airfoil shape; it was said that a skilled 

mathematician could perform the calculations in approximately 20 hours. Thus, 

most of the early work done following the theory of Mangler and Lighthill was 

focused primarily on improving the numerical solution, both its speed and accuracy 

(Peebles 1947; Glauert 1947; Timman 1951; Peebles and Parkin 1956). Starting in 

the l960s emphasis had shifted towards practical application through the use of the 

computer (Nonweiler 1968; lngen 1969; Arlinger 1970; Strand 1974; Polito 1974). 



4 

By the 1970s, the inverse approach had matured into a very powerful tool for 

design , but it was not without shortcomings-shortcomings that still exist today. 

The all-important integral constraints are expressed in terms of the velocity distri­

bution around the airfoil not as a function of arc length but as a function of the 

angular coordinate around the circle from which the airfoil is mapped. In other 

words , the desired velocity distribution can only be specified indirectly as a func­

tion of the cirde angular coordinate. Iterative techniques, however, were introduced 

by Arlinger (1970) and James in 1970, as discussed by Liebeck (1990) , so that the 

desired velocity distribution could be specified from the outset, subject of course to 

the integral constraints. 

From the need to satisfy the integral constraints arises a different problem. Since 

there are three integral constraints, it is necessary to introduce into the specified 

velocity distribution three, free parameters in order to satisfy them. Many successful 

ways have been devised to do this. A difficulty occurs when the values determined 

for these free parameters lead to unrealistic velocity distributions which in turn 

correspond to unrealistic airfoils, for instance, crossed airfoils or figure of eights 

as referred to by Garrick (1952). Essentially, all practical inverse methods employ 

some kind of iterative technique to overcome this difficulty. 

Finally, the last shortcoming pertains not to the application of the method 

but to the theory itself. Methods based on the theory of Mangler and Lighthill 

may be regarded as single-point inverse airfoil design methods ; that is , the desired 

velocity distribution is prescribed at a single angle of attack. The fact is that many 

airfoils must operate over a range-not at a single point . Whether or.not an airfoil 

designed by a single-point method satisfies multi-point design requirements must 

be determined through post-design analysis at the operating conditions of interest . 
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Consequently, the single-point design methods tend to be very tedious if multi-point 

design requirements are imposed. Although design by this single-point method has 

lead to many successful airfoils , a theory that has the explicit capability of handling 

multi-point design requirements from the outset is favored. 

While efforts were underway in the 1950s to improve the numerical techniques of 

the single-point design methods , Eppler published his theory for multi-point design 

(Eppler 1957). Since this time, the method has been improved and made readily 

available as a computer program (Eppler and Somers l980a,b; Eppler 1990) . To 

this day the program enjoys increasingly widespread use. The Eppler method al­

lows the airfoil to be divided into a desired number of segments along each of which 

the velocity distribution is prescribed together with the design angle of attack at 

which the velocity is to be achieved. In this way, multi-point design requirements 

can be satisfied during the actual design effort , not iteratively through post-design 

analysis . Despite the versatility of the method as a practical design tool, the actual 

theory has received very little attention; notable exceptions are Miley (1974) , Orms­

bee and Maughmer (1984) and Selig and Maughmer (1991) . Miley (1974) applied 

the Eppler method to the design of low Reynolds number airfoils , and Ormsbee 

and Maughmer (1984) derived necessary conditions and integral constraint s for the 

attainment of finite trailing-edge pressure gradient s. The contributions made by 

Selig and Maughmer (1991) will be discussed in this thesis. 

The 1950s also marked the beginning of new efforts aimed at the more precise 

definition of the velocity distribution in order to control the boundary-layer behavior 

and thereby control aerodynamic performance. In this respect , Wortmann (1955 , 

1957, 1961) and Eppler (1960 , l963a,b , 1969) made significant progress during the 

development of low-drag laminar-flow airfoils for sailplane applications . Most im-
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portantly, the design philosophy of Wortmann regarding the turbulent pressure re­

covery, specifically the philosophy that the boundary layer should avoid separation 

everywhere by a constant margin, was supported by the experiments of Stratford 

(1959). Subsequently, these findings, taken to the extreme, were applied by Liebeck 

and Ormsbee (1970) and Liebeck (1976, 1978) in the design of a special class of 

high-lift low-drag airfoils and also by Miley (1974) in the design of airfoils for low 

Reynolds number applications. Out of developments such as these, it became evi­

dent the one desirable way to approach viscous design was to prescribe the margin by 

which the boundary layer avoids separation, specifically the boundary-layer shape 

factor (Henderson 1978; Goettsching 1988) which itself is a measure of the tenden­

cy of the boundary layer to separation. In other cases, it has been desirable to 

achieve other boundary-layer distributions in order to control such things as lami­

nar flow, transition location, laminar and turbulent separation, stall characteristics, 

cavitation, etc. (Viken 1980; Shen and Eppler 1981; Maughmer and Somers 1989). 

Most often, a desired boundary-layer development is achieved indirectly by per­

forming a boundary-layer analysis of the prescribed velocity distribution and com­

paring the particular boundary-layer development with what is desired. If agree­

ment is not satisfactory, the velocity distribution is modified interactively until 

agreement is reached. Since this approach is rather tedious, there has been some 

movement toward developing methods that allow the desired boundary-layer distri­

bution to be prescribed directly from which ultimately the profile shape is derived 

(Henderson 1978; McMasters and Henderson 1979; Goettsching 1988). The pro­

cedure involves first finding the velocity distribution corresponding to the desired 

boundary-layer development through the use of an inverse boundary-layer tech­

nique. Second, through an inverse design method, the corresponding profile shape 
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is determined from the velocity distribution . Such methods , however , have not been 

adopted widely mainly for three reasons. First, the resulting velocity distribution 

from the inverse boundary-layer method will not satisfy the necessary three integral 

constraints automatically. Thus, some adjustment to the velocity distribution must 

be made, and, afterwards, the desired boundary-layer development will no longer 

be achieved exactly. Second, it is not always possible to express the boundary-layer 

equations in terms of the desired boundary-layer development. Third, although 

these methods are suitable for single-point design, it is unclear how to formulate 

the method for multi-point design. 

It should be mentioned that an alternative approach to airfoil design is through 

optimization (Hicks and Vanderplaats 1977; Sobieczky 1989; Ghielmi et al. 1989; 

Drela 1990a; Sorensen 1991). Optimization formulations by their very nature have 

the particular potential advantage of taking into account all the relevant consider­

ations in the areas of aerodynamics, structures, and stability and control just to 

name a few. Ironically, therein lies its very weakness. In a consideration of the 

multi-disciplinary nature of the design problem, it becomes necessary to define a 

suitable object function and constraints. What determines the best object function 

and appropriate constraints, however, is usually not known beforehand but rather 

only becomes known after the design process is well underway. Research into expert 

systems will probably aid in this definition process, but practical application is far 

from becoming a reality. For the time being, the airfoil designer will remain a key 

element in the design process and inverse techniques will be the tool of choice. 

The significant contribution of the current research pertains to the development 

• of a method that allows for the prescription of either the velocity distribution or 

boundary-layer development in a multi-point fashion . In addition, single parame-
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ters like the airfoil maximum thickness and the zero-lift pitching moment may be 

prescribed-parameters which usually can only be specified in optimization formu­

lations. After having specified the desired set of characteristics, the airfoil shape 

is determined by coupling an incompressible, potential-flow, inverse airfoil design 

method with a direct boundary-layer analysis method and solving the resulting 

nonlinear system of equations via a multi-dimensional Newton iteration technique. 

Details of the method (Selig and Maughmer 1991a,b) and example airfoils are given 

in Chapter 2. Also described in Chapter 2 is a new potential-flow airfoil-analysis 

method based on conformal mapping. 

The principles applied in the design of isolated airfoils can also be applied in an 

analogous manner to cascades. Lighthill ( 1945 b) was the first to show, through the 

use of conformal mapping, that in the design of an infinite cascade of airfoils the 

velocity distribution had to satisfy three integral constraints as with the isolated 

airfoil, albeit the constraints are considerably more complicated. In fact, applica­

tion of the theory is difficult enough so that relatively few have ventured to apply 

Lighthill's method (Crooks and Howard 1954; Johnson 1957; Ruzicka and Spacek 

1981 ). Part of the difficulty stems from the use of two mappings rather than one, 

and part comes from the evaluation of the resulting integral constraints. It seems 

that efforts at cascade design by conformal mapping methods have been all but 

abandoned. Methods based on singularity distributions are by far most common 

(e.g., Wilkinson 1969; Schwering 1970; Lewis 1982). 

A drawback of the Lighthill method and methods based on singularity distri­

butions is that they are only capable of solving the single-point inverse cascade 

design problem. As with the isolated airfoil, there is a strong interest in• solving 

the multi-point design problem. To address this need, a theory for a multi-point 
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inverse cascade design has been formulated and is presented in Chapter 3. As with 

Lighthill's method, conformal mapping is used. The difference is that instead of 

involving two mappings only one is used. The resulting integral constraints are 

expressed in such a way that their evaluation is relatively straightforward. Also 

given in Chapter 3 is a simple theory for the generation of exact solutions to the 

flow through an infinite cascade and a new potential-flow cascade-analysis method 

based on conformal mapping. Chapter 4 gives suggestions for future work. Finally, 

conclusions are presented in Chapter 5. 
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Chapter 2 

ISOLATED AIRFOILS 

This chapter is made up of three , main parts related to isolated airfoils. In 

section 2.1, a potential-flow multi-point inverse airfoil design method is presented. 

The method forms the basis of a fairly general inverse airfoil design tool for incom­

pressible :flow. Viscous design aspects are considered in section 2.2. Finally, it is 

shown in section 2.3 that the theory developed in section 2.1 can be used to solve 

the analysis problem; that of finding the velocity distribution about a given airfoil 

shape. 

2.1 THE POTENTIAL FLOW INVERSE DESIGN PROBLEM 

As discussed in the introduction, the preferred way of solving the inverse air­

foil design problem for incompressible :flow is through conformal mapping. This 

preference is derived from the fact that the :flow around an arbitrary airfoil may be 

mapped to the :flow about a circle. The :flow in this circle plane is easily determined; 

it only remains to determine the mapping. How this mapping is actually determined 

depends on the type o.f problem being solved. The Joukowski airfoil problem is one 

for which the mapping is specified. From this mapping both the airfoil shape and 

the flow about this airfoil are determined. For the analysis problem of an arbitrary 

airfoil, the task becomes that of finding the mapping which takes the circle to the 

airfoil. From this mapping follows the velocity distribution. Lastly, there is the 

inverse problem. The object is to determine the mapping not from the airfoil shape 

but from the specified airfoil velocity distribution. In this case, it is most convenient 



11 

to solve not for the mapping, per se, but for the mapping derivative since this can 

be related directly to the specified velocity distribution. This is the approach taken 

by Mangler (1938), Lighthill (1945a), Eppler (1957) and several others afterwards. 

This section begins with a consideration of an extension of the Eppler theory 

(1957). In particular, the mapping is assumed to be of the form capable of mapping 

the circle to an airfoil with either a cusped or finite trailing-edge angle. Eppler 

(1957) only considers the cusped airfoil case. Furthermore, a new solution proce­

dure is developed which allows for prescriptions of desired parameters, such as the 

pitching moment, maximum thickness ratio and velocity distribution v( s ). In sec-

tion 2.2, this solution technique is generalized to include viscous design. In what 

follows, the integral constraints for multi-point inverse airfoil design are derived 

through the use of conformal mapping. Also, continuity conditions on the velocity 

distribution are shown to result from specifying the velocity distribution in a piece-

wise (multi-point) fashion. Example airfoils, not meant for practical application, 

are finally presented to illustrate the use of the basic theory and the implementation 

of the Newton iteration in design. 

2.1.1 Conformal Mapping and Conditions on the Mapping 

The complex potential for uniform fl.ow of unit velocity at angle of attack a 

about a unit circle in the (-plane is given by 

(2.1) 

where r = 471" sin a so as to satisfy the Kut ta condition by fixing the rear stagnation 

point at ( = 1. The front stagnation point is then located at c/> = 'Y = 71" + 2a. To 

obtain the fl.ow about an arbitrary airfoil in the z-plane, the fl.ow about the circle 

in the ( -plane is mapped via z = z(() as illustrated in figure 2-1. 



v~ 
I 
a 

© 

y 0 

Figure 2-1 Mapping from circle to airfoil plane. 
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The mapping must satisfy three conditions: the airfoil trailing-edge angle must 

be finite , the flow at infinity must be unaltered, and the airfoil contour must close. 

These latter two conditions lead ultimately to the integral constraints for multi-

point inverse airfoil design. The mapping is assumed to be of the form 

(2 .2) 

where, for a convergent power series , it is required that 1(1 ;:::= 1. As discussed by 

James (1971) , the Schwarz-Christoffel factor (1-1 / () 1-f guarantees an airfoil with a 

trailing-edge angle of 7rt:. Taking E = 0 for a cusped airfoil yields the transformation 

used by Eppler (1957) . 

To determine the remaining conditions on the mapping, it is helpful to expand 

equation (2 .2) as 

-=eO 0 1+ + · ·· dz a +ib ( ai - 1 + E + ib1 ) 
d( ( 

The condition that the :flow at infinity be unaltered is expressed as 

which is only satisfied if 

dz 
lim di' = 1 

(->oo <,, 

ao = 0 and bo = 0 

The condition that the airfoil be closed can be written as 

J dz = J dz d( = 0 
Jez Jc, d( 

(2.3) 

(2.4) 

(2.5a , b) 

(2.6) 

where Cz and Cc; are about the airfoil and the circle, respectively. From equation 

(2 .3) , this condition is only satisfied if 

ai = 1 - E and bi = 0 (2.7a , b) 
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If the intent were merely to generate an airfoil, one could stop here . The series 

2::( am + ibm )(-m could be truncated, and the coefficients could be set arbitr<l;rily 

with the simple exception that ao = bo = b1 = 0 and ai = 1 - E. The mapping 

would satisfy all of the necessary conditions and would produce an airfoil with the 

desired trailing-edge angle 7rE. The motivating factor to continue comes from the 

desire to specify not the series coefficients explicitly but rather the velocity in a 

multi-point fashion about the airfoil. 

2.1.2 Relation between the Mapping and the Complex Velocity 

The problem at hand is to relate the desired velocity distribution about the 

airfoil to the series coefficients of the mapping. To this end, the complex velocity 

in the z-plane is expressed as 
dF .9 - = ve-i 
dz 

(2.8) 

which on the boundary of the unit circle, ( = ei<f>, becomes 

dFI =v(cp)e-ifJ(</>) 
dz (,=ei<P 

(2.9) 

Obtaining the real and imaginary parts of equation (2.9) for later use is facilitated 

by taking its natural logarithm. This, however, requires special consideration since 

v( ¢) is negative along the lower surface aft of the leading-edge stagnation point 

as shown in figure 2-2. This problem is alleviated by taking the absolute value, 

lv(¢)1 = v*(cp). In so doing, the flow direction must jump by 7r at the leading-edge 

stagnation point and by 7rE at the trailing edge. To reflect these jumps, 8( ¢) is 

replaced by 8* ( ¢). Now 

dFI = v*(cjJ)e-ifJ*(cp) 
dz (,=ei<P 

(2.10) 

' 
and taking the natural logarithm yields 

ln(~~) I . = lnv*(¢) - i8*(¢) 
(=et¢ 

(2.11) 
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Figure 2-2 Relation between v(<P) and v•(¢): (a) velocity v(</J) and flow 
angle 0( <P) near the stagnation point , ( b) velocity v•( <P) and 
flow angle 0*(¢) near the stagnation point and (c) velocity v(<P) 
and v•(¢) at two points on the airfoil. 
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To relate v' ( </>) and B* (</>)to the series coefficients, the complex velocity is written 

alternatively as 

dFI dF/dCl<;=ei<P 

dz <;=ei<P = dz/d(J<;=ei<P 
(2.12) 

The numerator dF/d(J<;=ei<P is simply the known flow over the circle given by 

dFI = 4sin(</>/2) cos(</>/2- a*(</>))e-i(¢-rr/2 ) 

d( <;= ei<P 
(2.13) 

The reason for writing the angle of attack as a* ( </>) will be explained in section 

2.1.5. Since the factor cos(</>/2 - a*(</>)) is negative for 7r + 2a*(</>) < </> < 27r, the 

complex velocity about the circle is, in preparation for taking its natural logarithm, 

alternatively written as 

dF I = 4sin(¢/2) I cos(¢/2 - a*(</>))Je-i(¢-rr/2 -rr*(¢)) 
d( <;=ei<P 

(2.14) 

where 

(2.15) 

for 0 :=:; <P :=:; 27r. The step function 7r* ( <P) is introduced in order to account properly 

for the jumps in the flow direction at the front and rear stagnation points on the 

circle. 

From equation ( 2.2), the derivative of the mapping function on the unit · circle is 

(2.16) 

or 

(2.17) 

where 

= = 
P( </>) +iQ( <P) - L (am cos m</>+ bm sin m</>) +i L (bm cos m</>- am sin m</>) (2.18) 

m,=O m=O 
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Using equations (2.14) and (2.17) and taking the natural logarithm of equation 

(2.12), the following result is obtained 

ln ( dF) I __ ln { ( 2 sin <P / 2 )- • } 
dz (=ei¢ - 21 cos(<P/2 - a*(<P))I 

+i[7r*(<P) - <P/2 + c(7r/2 - <P/2)] - P(<P) -iQ(<P) (2.19) 

Equating equations (2.11) and (2.19) gives the important result 

P ( <P) + i Q ( <P) = _ ln { ( 2 sin <P / 2 )-• v * ( <P) } 
21 cos(<P/2 - a*(<P)) I 

+i[B*(<P) + 7r*(<P) - <P/2 + c(7r/2 - <P/2)] (2.20) 

It is seen from equation (2.20) that the specification of the velocity v*(<P) and 

angle of attack a*( <P) determines P( <P) uniquely. Alternatively, the specification of 

the airfoil fl.ow direction B* ( <P) and a* ( <P) determines Q( <P) uniquely. From either 

P( <P) or Q( <P ), the corresponding conjugate harmonic function may be determined 

through the Poisson integral exterior to the unit circle, that is, 

1 1271" 'I/; - <P 1 1271" 'I/; - <P 
P(<P) + iQ(<P) = -- Q('l/;) cot -- d'lj; + i - P('l/;) cot -- d'lj; 

27r 0 2 27r 0 2 
(2.21) 

A discussion of how Q( <P) is determined numerically from P( <P) is given in section 

2.1. 7.3. 

2.1.3 Airfoil Coordinates 

Once P( <P) and Q( <P) are known, the airfoil coordinates may be computed by 

equating the expression 

(2.22) 
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with equation (2.17). After some manipulat ion, this gives 

x( </>) + iy( </>) = - J (2 sin </>/ 2)1 - F eP( <f>) e i[q>/2-f(r./ 2- ct>/2)+ (/(<P)J d<f> (2.23) 

The airfoil coordinates, x( </>) and y( </> ), are then obtained through quadrature. 

2.1.4 Airfoil Lift and Moment 

By the Blasius relations, the airfoil lift and moment are given by 

L = ~pRe{fC, (::)'dz} and Mo = ~pRe{fC, (::)'.dz} (224a,b) 

where the lift acts perpendicular to the freestream and the moment is taken as pos-

itive in the clockwise direction. The contour Cz is any closed curve which encloses 

the airfoil. It is well known that equation (2.24a) leads to 

L=pVr (2.25) 

Since r = 471" sin a, the lift coefficient becomes 

L 47rpV sin a 
(2.26) 

Taking V = 1, as is consistent with equation (2.1), gives 

871" sin a 

c 
(2.27) C/ = ---

Typically, the airfoil as computed by equation (2.22) has c ~ 4. Using this ap-

proximation for the chord and assuming a small angle of attack gives c1 ~ 27ra. 

Consequently, specifying an angle of attack a is essentially like specifying the lift 

coefficient. 
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Equation (2.24b) for the moment is evaluated by taking Cz to be the contour 

about the airfoil itself; however, the integral (2.24b) is evaluated not in the airfoil 

plane but in the circle plane. Using the relations 

dF dF/ d( 

dz dz / d( 

expression (2.24b) becomes 

and dz= dz d( 
d( 

1 { J ( dF) 2 z( () } 
Mo= 2 P Re Jc, d( dz / d( d( 

(2.28a , b) 

(2.29) 

where the contour CZ has been mapped into the contour c( about the unit circle. 

Evaluation of the moment begins with the determination of the integrand in 

equation (2.29) . From equation (2 .1) , it is found that 

(2.30) 

which yields 

From equation (2 .2), it is found upon expansion that 

dz .\ 
-=l+-+· ·· d( (2 

(2.32) 

where 

(2 .33) 

Inverting equation (2.32) gives 

1 .\ 
dz I d( = i - (2 + ... (2 .34) 



and integrating equation (2.32) gives 

,\ 
z = (--+··· 

( 
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(2 .35) 

where the constant of integration has been taken as zero for convenience. Combining 

equations (2.31 ), (2.34) and (2.35) produces 

( dF)2 z(() - -2ia [1 ( i~1 ) 2e i"Y + (1 + ei' )2 - 2,\ l - --- e .,-21+e + + ··· 
d( dz / d( ( 

(2.36) 

so that 

J (dF)
2 _1Q_ d( = 27ri{e - 2i°'[2eil' + (1 + ei1')2 - 2.\]} Jc, d( dz / d( 

(2.37) 

Taking the real part of equation (2.37) according to equation (2.29) finally gives 

Mo = 27rp [b2 cos 2a - ( a2 - 1/2 + E/2) sin 2a] (2.38) 

where, from the Euler formulas for the Fourier series coefficients which define the 

mapping derivative [equation (2 .2)] 

1 127!" 
a2 = - P ( <P) cos 2</J d</J 

7r 0 
and 

1 127!" 
b2 = - . P( <P) sin 2</J d</J 

7r 0 
(2.39a, b) 

The moment as given by equation (2.38) is, as previously stated, the moment 

about the origin in the airfoil plane. Following standard convention, however, it 

is desired that the moment be about the airfoil quarter-chord point. Equation 

(2.23) upon integration provides the airfoil shape relative to an additive constant 

of integration and does not therefore locate the airfoil in proper reference to the 

origin. In order to find the moment about the airfoil quarter-chord point, the first 

step is to locate the airfoil in proper reference to the origin and then to resolve the 

lift and moment at the origin into a lift and moment at the quarter-chord point. 

The latter problem is solved through simple statics, while the former one requires 
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some ingenuity if it is to be solved short of determining the entire mapping z( ()-a 

task which would be computationally expensive. 

A straight-forward procedure for finding the proper placement of the airfoil 

relative to the origin starts by dividing equation (2 .35) by ( to yield 

z( () ,\ 
-=1--+·· · 

( (2 

Integration of this equation about the unit circle as 

1 z( () d( = 1 (1 - ~ + · · · ) d( 
Jc, ( Jc, ( . 

gives, upon integration of the right hand side, 

On the unit circle, this becomes 

or 
r27r 

lo x( </>)def> = 0 and 
r21r 

lo y(</>)d</>=0 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

(2.44a, b) 

In words, the airfoil coordinates must satisfy equations (2.44a,b) or else the airfoil is 

not placed in proper reference to the origin. Realizing that the airfoil as computed 

by equation (2.23) will not satisfy these equations automatically (since the additive 

constant is not known a priori), corrections can be introduced as 

x(</>) = x(</>) + 8x and y( </>) = y( </>) + 8y (2.45a , b) 

where x( </>) and fl(</>) are the airfoil coordinates as computed through equation (2.23) 

and bx and 8y are the corrections . Substituting equations (2.45a,b) into (2.44a,b) 

yields the correction equations 

1 127r 8 x = - - x ( </>) def> 
27r 0 

and 
1 127r 8y=-- y(</>)dcf> 

27r 0 
(2.46a, b) 
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Once having solved for ox and oy, the airfoil may be translated by equations 

(2.45a, b). 

W ith the airfoil in proper reference to the origin, the moment about the quarter-

chord point Mc;4 can be found. The pitching-moment coefficient about the quarter-

chord point Cm c/
4 

is given by 

(2.47) 

using V = 1. For the special case of zero lift (a = 0) , it is not necessary to correct 

t he airfoil coordinates by ox and oy because the point about which the moment is 

taken is arbitrary. In this special case, the zero-lift pitching-moment coefficient cm0 

becomes through equation (2.38) 

Mo( a = 0) 
Cmo = l 

2PV2c2 
= --

c2 

2.1.5 Multi-Point Design Capability of the Theory 

For discussion, P(<P) given by equation (2.20) is rewritten as 

p ( <P) = _ ln { ( 2 sin <P / 2 )-( v * ( <P) } 
21 cos(<fa/ 2 - a:*(<P))I 

(2.48) 

(2.49) 

The function P(<P) depends only on <P and is defined by specification of v* (<P) and 

a*( <P ), now termed the design velocity distribution and the corresponding design 

angle of attack distribution. For single-point design, as in Lighthill's theory (1945a) , 

a* (<P) is zero while v*(<P) is a continuous specified function. It is not necessary, 

however, that v*(<P) and a*(<P) be continuous functions; rather, it is only necessary 

that P( <P) be continuous. Therefore, in order to maintain a continuous function 

P( <P ), a discontinuity in v* ( <P ) between two segments must be compensated by a 

corresponding discontinuity in a* ( <P ). Consequently, the airfoil may be divided 
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into any number of segments along which the velocity v*( </>) and angle of attack 

a*(</>) are given. Practical considerations for multi-point design dictate that over 

each segment of the airfoil a*(</>) be constant while v*(c/>) may vary in order to 

obtain some desired velocity distribution over the given segment at the design angle 

of attack. This process of specifying v* ( </>) for different segments of the airfoil at 

different angles of attack a*(</>) easily allows for multi-point design. This is the most 

important result of the theory: discrete segments of the airfoil may be designed for 

different angles of attack, or more generally each segment may be designed for a 

different operating condition (Reynolds number , angle of attack, etc.). This result 

will be illustrated later by example. 

2.1.6 Constraints and Special Considerations 

2.1.6.1 Integral Constraints 

As with any inverse airfoil design formulation , the specification of the velocity 

distribution is not completely arbitrary. Since the function P( ¢>) can be expressed 

as a Fourier series where Q( </>) is the conjugate series, the conditions on the map-

ping coefficients , equations (2 .5a,b) and (2.7a,b), give rise to integral constraints on 

both P( </>) and Q( </> ). The integral constraints on P( </>) come from the first three 

coefficients of the Fourier series representation for P( </> ), that is, from equations 

(2.5a) , (2.7a,b) and (2.18) 

1 
ao 

27r 
fo 2

7r P( </>)de/> =0 (2.50a) 

ai 1 12
7r = - p ( cP) cos cP de/> 

7r 0 
=1-E (2.50b) 

bi 1 12
7r = - P ( </>) sin </> de/> 

7r 0 
=0 (2 .50c) 



24 

Likewise, t he three integral constraints on Q( ¢ ) are 

bu = 2_ 127r Q(¢)d¢ 
271" 0 

=0 (2.5la) 

b1 
1 12rr 

= --:;;:-- 0 Q( ¢)cos¢ d¢ =0 (2.5lb) 

-a1 
1 12rr = - Q( ¢) sin ¢ d¢ 
7l" u 

=t:-1 (2.5lc) 

Considering the expressions for P( ¢) and Q( ¢ ), it is seen that equations (2 .50a-c) 

are integral constraints on v*(¢) and a.*(¢) , while equations (2.5la-c) are integral 

constraints on 8*(¢) and a. *(¢). 

As could be anticipated , the preceding integral constraints are closely related 

to several others found in the literature. In fact , they are thought to be the most 

general form of the integral constraints for incompressible inverse airfoil design. For 

cusped airfoils, the integral constraints on P( ¢) are equivalent to those of Eppler 

(1957) when E = 0. Eppler does not give or discuss the integral constraints on Q(¢) 

because these integral constraints are not a necessary step in the formulation. 

For single-point design in which the angle of attack a is constant , the integral 

constraints reduce to those of Strand (1973) given for v~(¢) and 8~ (¢) by 

(2.52) 

and 

(2.53) 

In verifying equation (2.53) , the integration must be performed in two parts for 

a given angle of attack a. The first part is from the trailing edge ¢ = 0 to the 

stagnation point I= 7r+2a. with the integrand Q(¢) = 8~ (¢)-¢/2+t:(7r/2-¢/2). 
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The second part of the integration is from the stagnation point to the trailing edge 

</> = 27r with Q(</>) = B~(</>) + 7r - </> / 2 + €(7r/2 - </>/2). 

For a single-point design at zero-lift where a*(</>) = 0 and v*(</>) = v0(</>), the 

integral constraints on P( </>) reduce to 

(2.54) 

as presented by Lighthill (1945a). It is not well known that these last integral 

constraints commonly attributed to Lighthill were derived earlier by Mangler (1938). 

Furthermore, as noted by Mangler, essentially the same conditions were found even 

earlier by Betz (1934) and, for the most part, by Weinig (1929). 

2.1.6.2 Continuity Constraints 

For multi-point design, the requirement that P( </>) be continuous introduces a 

continuity equation on P( </>) at each arc limit between segments where there is a 

jump in v*( </>) and a corresponding jump in a*(</>). This condition of continuity 

between segments is expressed as 

(2.55) 

or 

(2.56) 

where </>i is the arc limit between segments i and i + 1. An alternative and more 

physical derivation of the continuity constraints is presented in Appendix A. This 

condition of continuity is not strictly necessary. For instance, the design velocity 

distribution could jump discontinuously at a point on the airfoil and thereby model 

suction (Lighthill 1945a; Glauert 1947) or blowing on the airfoil surface. Such airfoil 
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flows will not be considered here, and P( <P ) is required to be continuous as indicated 

previously. 

2.1.6.3 Limiting Behavior of the Velocity Distribution in the Vicinity 

of the Stagnation Points 

The velocity distribution must satisfy not only the integral constraints and con-

tinuity conditions, but in the vicinity of the stagnation points it must go to zero in 

a special way. This may be seen through equation (2.20) which gives 

v*( </>) = (2 sin ¢ / 2r 21 cos( <P/ 2 - a*( <P ))le- P(<i>) (2.57) 

Stagnation points will always occur at the forward stagnation point <P = / = 7r + 

2a*(</>) and, when E-:/= 0, at the trailing edge</>= 0, </> = 27r. According to equation 

(2.57) , the velocity in the vicinity of the trailing edge must go to zero as 

lim v*(<P) ,..., (sin</>/ 2r 9+(</>) 
ef> + --+0 

(2.58a) 

lim v * ( </>) ,..., (sin </> / 2 t 9- ( </>) 
<P - --+2 11" 

(2.58b) 

where 9+ ( </>) and 9-( <P) are positive, non-zero functions. James (1971) obtained the 

same theoretical trailing-edge velocity relation in an effort to understand the airfoil 

trailing-edge curvature singularity. Similarly, from equation (2.57), the velocity in 

the vicinity of the forward stagnation point must go to zero as 

lim v*(<P),..., jcos(<f>/ 2 - a*(</>)) l h+(<P) 
r!>+ --+'Y 

(2.59a) 

lim v*(<P),..,., I cos(</>/ 2 - a*(<P))I h_(<f>) 
<P- --+ 'Y 

(2.59b) 

where the forward stagnation point I is at 7r + 2a*(</>) and where h+(<P) and h- (<P) 

are positive, non-zero functions. 
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2 .1. 7 Numerical Implementation 

The conditions on the mapping function which lead to the integral constraints 

on P( </>) require that the specification of P( </>),using v*( </>) and a*(</>), must contain 

at least three, free parameters to be determined by solution. For each segment, 

another free parameter must be introduced to satisfy the continuity constraint on 

P( </>) between segments . All of the necessary free parameters are introduced in 

a way that facilitates the numerical solution, that allows for implementation into 

the multi-dimensional Newton iteration, and that permits the design of practical 

airfoils . 

2.1.7.1 Specification of the Velocity Distribution 

The four-segment airfoil depicted in figure 2-3 is given as an example. The 

design velocity distribution and the design angle of attack distribution for each 

segment are prescribed piecewise as follows : 

v*(</>) =v1w(</>) 

a*(</>) = a1 0 :::; </> :::; </>1 (2.60a) 

v*(</>) = Vz + Vz(¢z) 

a*(</>) = a2 </>1 :::; </> :::; </>2 (2.60b) 

v*(</>) = V3 + V3(¢3) 

a*(</>) = a3 </> 2 :::; </> :::; </> 3 (2 .60c) 

v*(</>) = V4 w(</>) 

a* (</>) = a4 cP3 :::; </> :::; 27!" (2.60d) 



y 
© 

x 

Figure 2-3 Circle divided into four segments and mapped to a four-segment 
airfoil. 
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- -
·where <h = ¢-¢1 and </>3 = </>-</>2 . The velocities Vi and the design angles of attack 

ai are constant along their respective segments, while ih( Ji), w( </>) and w( </>) all vary 

with ¢. The velocity function w( </>) is termed the upper-surface recovery function, 

while w( </>) is the corresponding function for the lower surface. The special notation 

C) will be discussed later. Although only four segments are presented here, the 

method is general enough to handle any number of intermediate segments of the 

The upper-surface recovery function is defined by 

where 

w(</>) = Wnf(<P)w~H(</>)wp(</>), 0 :S </> :S </>1 

( </>) (cos </> - cos </>ir) ww = 1 + K </> , 
1 +cos lr 

0 :S </> :S </>w 

{ 1 _ 0_36 ( cosq\- cosq\s )' 0 :S </> :S <Ps ws(</>)= l-cos</>s ' 
1, </> S '.S </> '.S </>H-

{ 
sin ¢/2 

w F ( </>) = sin </> F / 2 ' 
1, 

0 '.S </> '.S </>F 

</> F :S </> :S </>n-

(2.61) 

(2.62a) 

(2.62b) 

(2.62c) 

with </>w = ¢1. The lower-surface recovery function w( </>) is of the same form 

except that wn-(</>), ws(</>), wp(<f>) and the parametersµ, KH, K, </>n-, </>sand <f>p 

are replaced by wn·(</>), ws(</>), wp(</>), µ, KH, K, <fin-= ¢3, <f>s and (/Jp . 

The first two contributions to the recovery functions, w1r( q)) and w s( </>), appear 

in the Eppler formulation (1957) while the last contribution, wp(</>), is new and must 

be introduced to satisfy the trailing-edge velocity relations (2.58a, b ). For a typical 

airfoil design </>n- > </>s > </>F ; for instance, </>n- = 100°, </>s = 30° and cPF = 15°. In 

this case, the first factor wnf ( </>) controls the main part of the recovery. The second 

factor w~H ( </>) controls to a great extent the velocity distribution in the vicinity 
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of the trailing edge which, in turn , affects the shape of the airfoil near the t railing 

edge as will be discussed in section 2.1.9. Using the values for the arcs limits given 

previously and taking µ = 0.3, KH = 0.1 , E = 0, K = 1 gives the total recovery 

function shown in figure 2-4. As seen from the figure , the component functions 

only take effect over their respective arc limits. Since in this example c = 0, the 

airfoil has a cusped trailing edge. An airfoil with a 10° trailing-edge angle, for 

instance, requires E = 1/ 18. In this case the recovery function now produces a zero 

trailing-edge velocity as shown in figure 2-5. 

As shown in figure 2-6 for a segment ¢£- l < ¢ < ¢i, it is possible to select a 

design angle o~ attack such that the stagnation point falls on that segment since 

"( = 7r + 2ai . In this case, it is necessary to follow the forward stagnation point 

velocity relations (2.59a,b ). Because the forward stagnation point moves with the 

angle of attack, however, it is possible to specify the design angle of attack such that 

the stagnation point falls outside of the segment. In this case, the forward stagnation 

point velocity relation is bypassed. This is the approach adopted by Eppler and 

followed here. Considering all segments, the condition that the stagnation point 

falls outside of the segment (either ahead of it or behind) is met by requiring 

¢1 - 7r 1T 
(2.63a) 

2 < a 1 < 2 

1T ¢1 - 7r ¢2 - 7r 7r 
(2.63b) -- < a2 < 

2 
or 

2 < a2 < 2 2 
7r ¢2 - 7r ¢3 - 7r 1T 

(2.63c) - 2 < 0!3 < 2 
OT 

2 < a3 < 2 
1T ¢3 - 1T 

(2.63d) - - < a 4 < 
2 2 

In the design of a typical airfoil, these conditions are met easily. 

A non-constant design velocity distribution over each intermediate segment is 

introduced through the velocity func tions Vi ( ~i ). This capability is not considered 
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Figure 2-4 Component recovery functions and total recovery function for 
c/rw = 100°, c/>s = 20°, µ = 0.3, KH = 0.1, E = O, and K = 1 
corresponding to an airfoil with a cusped trailing edge. 
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Figure 2-5 Component recovery functions and total recovery function for 
</>lr = 100°, </>s = 20°, <f>p = 10°, µ = 0.3, KH = 0.1, 
f = 1/18 and K = 1 corresponding to an airfoil with 
a 10° trailing-edge angle. 
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Figure 2-6 Example where the leading-edge stagnation point falls on the 
segment at the segment design angle of attack. 
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in t he Eppler solut ion formulation. The notation C) is used to indicate the value 

relative to the beginning of the segment i. Thus, as drawn in figure 2-7, J>i is 

the relative arc limit for the segment. Likewise the velocity vi (J> i ) is the velocity 

relat ive to the beginning of the segment such that 

(2.64) 

as indicated in figure 2-7. In equations (2.60b, c), Vi is as a result of equation 

(2.64) the velocity at the beginning of an intermediate segment i. Appropriately, Vi 

and vi( Ji ) are respectively termed the velocity level and the relative design velocity 

distribution for an intermediate segment i. Consistent with the approach of avoiding 

a forward stagnation point on a segment, it is required that v*( </>) > 0 or 

(2.65) 

The relative design velocity functions Vi( Ji ) may be piecewise linear, cubic spline, 

or analytic functions and thereby offer a great deal of freedom in the design and 

especially in the Newton iteration scheme discussed later. 

2.1.7.2 Governing Equations for the Inverse Design Problem 

Substituting the expressions for v*( </>) and a*(</>) , equations (2.60a- d), into the 

three integral constraints on P( </>) leads to 

au µ,+ a i 27I- + ai3KH + aHK H = bi 

a21µ, + a22µ; + a23KH + a24K H = b2 

a31/L + as27I- + a33KH + as4K H = b3 

Detailed expressions for the coefficients are given in Appendix B. 

(2.66a) 

(2.66b) 

(2.66c) 



,.., 
S· l 

Figure 2-7 Splined relative velocity distribution in terms of the circle 

coordinate <Pi and Si for the resulting airfoil. 
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It is of interest to note that the integral const raints on P( </>) are much easier 

to evaluate than those on ln v;( </> ), as done through equations (2.52a) or (2.54) in, 

for example, Lighthill (1945a) , Glauert (1947), Timman (1951), Nonweiler (1968) , 

Ingen (1969), Arlinger (1970) and Strand (1973). At the stagnation points, Inv; (</>) 

is singular while the singularities of P( </>) are removable owing to the velocity rela­

tions in the vicinity of the stagnation points. Hence, P( </>) is bounded in contrast 

to ln v; ( ¢). 

Continuity of P( </>) at the trailing edge gives 

(2.66d) 

where the coefficients are again given in Appendix B. Continuity between the seg-

men ts at </>1 , </>2, and </>3 requires further that 

V2 V1 

I cos(¢i/2 - a2)I 
-

I cos( </>i/2 - ai) I 
(2.67 a) 

V3 v2 + v2 ( ¢2 = </>2 - <Pi) 
I cos( ¢2 / 2 - a3)i I cos(</>2 / 2 - a2) I 

(2.67b) 

V4 V3 + V3( ¢3 = <f>3 - </>2) 

I cos( <f>3 / 2 - a4)i 
-

I cos( ¢3 / 2 - a3) I 
(2.67 c) 

Thus, there are seven equations to satisfy for an airfoil with four segments. Conse-

quently, all but seven parameters can be specified. 

Due to the convenient linearity of equations (2.66a-d) with respect to µ , µ, 

K H and K H, it is natural to select these parameters as four of the required seven 

unknowns. Through the continuity equations (2.67 a- c ), it is easiest to give any 

single velocity level, say v1 , and from it compute the remaining velocity levels: 

v2, V3 and v 4 . Therefore, a solution to the inverse airfoil problem can be determined 

by specifying all of the design variables except the seven which are unknown: µ, µ, 
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K H, K H, v2, v3 and v4. In summary, all of the design variables (besides E) for a 

four-segment airfoil are listed in table 2-1 below. 

Table 2-1 : Inverse Design Parameters for a Four-Segment Airfoil 
'/, <P a*(<P) v*(<P) 
1 [O, </>1] a.1 v1, w( </> ; <Pn- , <Ps , <PF , K , µ, KH) 
2 [</>1,</>2 ] a.2 V2' V2 ( J2) 
3 [</>2,</J3] 0.3 V3' V3 ( ¢3) 
4 [<f;3 , 27r] 0'.4 v4 , w( </> ; ef;lT ' ¢;5 , ef;F , K , µ, K H) 

2.1. 7.3 Numerical Determination of the Mapping 

After having satisfied the integral constraints, the functions v* ( <P) and a* ( <P) 

are known and P( </>) may be formed. Then, through the Poisson integral, Q( <P) 

is determined and the airfoil coordinates can be obtained through equation (2.23). 

Some discussion on the calculation of Q( </>) from P( <P) is necessary. Many methods 

of solution exist in the literature, but the most suitable method is that of Watson 

(1945) and Garrick (1952) which was subsequently improved by Eppler (1957) for 

the special circumstances of the present inverse formulation. 

As an overview, the methods of Watson and Garrick involve first the approxi-

mation of the harmonic function P( </>) by a truncated Fourier series. Then, through 

a procedure that amounts to performing two fast-Fourier transforms (Eppler 1990), 

the conjugate harmonic function Q( <P) is determined. If P( <P) is smooth, the fit of 

the Fourier series is good and the subsequent calculation of Q( <P) is accurate. If 

instead P( </>) has sharp corners , that is , a discontinuity in its slope, the fit of the 

Fourier series will be poor through the points near the sharp corners and Q( <P) will 

show oscillations much like the Gibbs phenomenon. It so happens , as will be shown 

later, that P( </>) in the present formulation can have sharp corners, with the one at 

the leading-edge arc limit usually having the largest slope discontinuity. To take 

into account these sharp corners, P( <P) can be decomposed into the sum of a smooth 
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part and a part containing the sharp corners. T he conjugate function Q( ¢> ) is then 

simply the sum of the conjugate function to the smooth part (obtained numerical-

ly) and the conjugate function to the part containing the sharp corners (obtained 

analytically). This is the p'rocedure used by Eppler to account for the sharp corner 

at the leading edge. In the present case , a general procedure is used to take into 

account all of the sharp corners so as to improve further the numerical accuracy of 

the calculation of Q( ¢> ). 

To begin with, the harmonic function P( ¢>) is expressed as 

P(c/>) = P(c/>) + S(c/>) (2.68) 

where P( </;) is the smooth part and S( ¢>) is the part containing the sharp corners. 

In order to ensure that P( </;) is smooth the derivative 

dP( c/>) 
de/> 

dP( <P) 
de/> 

dS(c/>) 
de/> 

(2.69) 

must be continuous. Consider a single sharp corner of P( ¢>) located at cPi as indi-

cated in figure 2-8. An infinitesimal distance to the left of cPi , the derivative is 

expressed as 

dP(c/>))- = dP(<P))- _ dS(c/>))-
dc/; d<P d<P 

(2.70a) 

while to the right 

dP(<P))+ = dP(<P))+ _ dS(4>))+ 
d<P de/; de/> 

(2. 70b) 

In order for dP( ¢>) / de/> to be continuous through cPi, it must be true that 

dP(c/>))- = dP(c/>))+ 
de/> d<P 

(2.71) 

or from equations (2 .70a,b) 

dP( c/>) )- _ dS( c/>) )- = dP( c/>)) + _ dS( c/>)) + 
de/> de/> de/> de/> 

(2. 72) 



p 

Figure 2-8 Sharp corner of P( <P) located at <Pi and slopes infinitesimally to 
the left and right of <Pi· 
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Introducing 

S( ¢) = k I sin ( ¢ ~<Pi ) I (2. 73) 

gives 

dS(<P)) - = -~ (<1> - </>i)J k 
(2.74a) = d</> 2 cos 2 </>=</>j 2 

and 

dS( </> ) ) + = k ( </> - ¢1 ) I k 
(2.74b) - cos -

d</> 2 2 <P= t/>i 2 

Thus, the condition for smoothness through the point <Pi becomes, from equations 

(2.74a,b) and equation (2.72), 

k = dP( </>)) + _ dP( </>) ) -
d¢ dq) 

(2. 75) 

Considering all sharp corners involves adding more functions of the form of 

equation (2. 73) to equation (2.68) with the constants k determined by equation 

(2.75). Thus, for M sharp corners, it may be written in general that 

11-f I (¢ -¢·)1 S ( ¢) = ~ ki sin 
2 

1 
(2.76) 

where 

ki = dP(<P))+ _ dP(</>)) -
d</> <P= <Pi dq) <P=ef>i 

(2. 77) 

evaluated at each sharp corner. The location of these sharp corners and the values 

of the derivative dP( </>) / def; at these locations is determined from equation (2.20) 

and equat ions (2.60a- d) which gives 

dP(</>) =-~ tan(¢/2 - a* (¢)) - -l _ dv* (¢) _ µ,K sin¢ 
dq) 2 v*(¢) dq) wn-(¢) 1 + cos </>w 

_ 0.72KH [ cos¢ - cos <P s] sin¢ _ _: cos ¢ / 2 
ws(<P) (1 - cos¢s)2 2 sin</J/ 2 

(2. 78) 
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The first term on the right hand side makes a contribution for each segment, and 

the second term only makes a contribution on the intermediate segments for which 

v( </>) is prescribed. The remaining three terms contribute in the recovery region, 

both for the upper and lower surface, although only the upper-surface terms are 

expressed for brevity. The third term affects the derivative over the entire recovery 

region, the fifth only over the closure region, and the fourth only over the finite 

trailing-edge recovery region. 

From equation (2 .21 ), the conjugate harmonic function is given by 

1 127r '!/; - </> 
Q(</>)=- P('l/;)cot--d'I/; 

27r 0 2 
(2.79) 

which through equation (2.68) and (2.76) becomes 

1 127r - '!/; - </> J\I ki 127rl (</>- </>i) I '!/; - </> =- P('l/;)cot--d'l/J+L- sin cot--d'I/; 
27r 0 2 . 27r 0 2 2 

1=1 

or 
l\l 

= Q(</>) + L Ti(</>) 
i=l 

Following Eppler (1957), Q( </>) is determined at 2N equiangular values 

from values 

by 

V7r 
</>v = N' 

I\T- 1 

v = 0,1,2, ... ,2N - 1 

(2.80) 

(2.81) 

(2.82) 

(2.83) 

- - 1 ~ - - µ7r 
Qv = Q(</>v) = N L_.-(Pv+µ -Pv-µ)cot 2N' µ = odd values only (2.84) 

µ,=l 

The conjugate harmonic functions Ti are given analytically by 

(2.85) 
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which can be evaluated at the values cf>v to give Tv i. Finally 

M 

Qv=Qv+LTvi (2.86) 
i=l 

which, together with Pv, is used to find the airfoil coordinates. 

2.1.8 An Example Airfoil 

As an example of the method, a simple four-segment airfoil with a cusped trailing 

edge is presented. This airfoil and the others that follow in section 2.1.9 are not 

intended for any practical application; rather, they merely serve as examples to 

illustrate the capabilities of the method. After specifying € = 0 to give a cusped 

trailing edge, together with everything listed in table 2-1 except the seven unknowns, 

equations (2.66) and (2.67) can be solved. The solution yields µ, µ, KH and K H 

such that the recovery functions w( ¢) and w( ¢ ), plotted in figure 2-9 (a), are 

defined completely. Also shown in figure 2-9 (a) are the prescribed relative velocity 

functions v2(J2) and v3(J3) satisfying the requirement that vi(Ji = 0) = 0. The 

velocity function v2 ( J2) is defined by a cubic spline of four points, and v3 ( J3) is 

prescribed as linear. ·with w(¢), v2 (J2 ), v3 (J3 ) and w(¢) known and v2 ,v3 and 

V4 found from the solution of the system, the complete design velocity distribution 

v*(c/>), shown in figure 2-9(b), is obtained. Through equation (2.20), a*(¢) and 

v*(c/>) are used to form P(c/>) which is plotted in figure 2-10. The jumps in a*(¢) 

which are compensated by jumps in v*(c/>), such that P(<P) remains continuous, are 

seen in figures 2-9(b), 2-9(c) and 2-10. As determined by the method discussed in 

section 2.1.7.3, the conjugate harmonic function Q(¢) is found and is also shown 

in figure 2-10. Airfoil coordinates are then computed using ·p(<P) and Q(</J). The 

airfoil profile together with the velocity distributions at a = 0°, 5°, 10° and 15° are 

shown in figure 2-11. 
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Figure 2-9 Special velocity functions and design velocity and angle of attack 
distributions for a four-segment airfoil. 
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To serve as a check on the numerical implementation of the theory, an airfoil 

designed by the ~ethod can be analyzed for its velocity distributions to see if they 

match the velocity distribution used in the inverse method to derive the airfoil shape. 

For analysis, the Eppler program (Eppler and Somers 1980a; Eppler 1988, 1990) 

is used. The panel method employs parabolically distributed vorticity and satisfies 

the boundary conditions at the panel end points with high-order approximations 

used for the influence of panel vorticity on itself. To verify the code predictions, 

the velocity distribution for a Joukowski airfoil (generated using a circle offset of 

µ = -0 .08 + i 0.06) was predicted for a = 6° and is compared with the exact 

solution in figure 2-12. Using double precision, the agreement is quite good with 

an RMS difference of 0.000449, where RMS= JJ:/(=1 (v1 i -v2J2/N. In this case, 

v1 . refers to the velocity at a point on the Joukowski airfoil, and v2 . is the velocity z z 

as predicted by the panel-method analysis. In figure 2-13, the velocity distributions 

at a = 0°, 5°, 10° and 15° for the airfoil shown in figure 2-11 are compared with 

predictions from the panel method. Again, the agreement is quite good with RMS 

differences of 0.000139, 0.000138, 0.000136 and 0.000133 for a = 0°, 5°, 10° and 

15°, respectively. 

2.1.9 Example Airfoils with Multi-Dimensional Newton Iteration 

Fundamentally, it is required for the inverse problem that the design velocity 

distribution v*( <P) and design angle of attack distribution a* ( cjJ) satisfy the integral 

constraints, continuity constraints and stagnation point velocity relations. In the 

design of any practical airfoil, however, additional requirements are usually imposed. 

For example, the airfoil thickness ratio and pitching moment may be prescribed, and 

the airfoil certainly must not cross over itself. Also, it may be desirable to specify 

the velocity distribution as a function of the arc length s. Furthermore, as discussed 
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Figure 2-12 Comparison between an exact Joukowski airfoil velocity distribution 
and that predicted by the Eppler program for a = 6°. 
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Figure 2-13 Velocity distributions as predicted by the Eppler program 
and compared with inverse solution for the airfoil shown 
in figure 2-11. 
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in Chapter 1, it is usually desirable to specify the boundary-layer development in 

order to control performance. 

For the purpose of discussion, consider the case where a desired zero-lift pitching-

moment coefficient is to be achieved. From equations (2.48) and (2.39b) , it is then 

necessary to satisfy the equation 

41271" 
Cm 0 = 2 P( </>)sin 2</> d</> 

c 0 
(2.87) 

where the value of cm0 is given. This equation represents an additional integral 

constraint which P( </>) must then satisfy. Thus , an additional inverse design pa­

rameter (from table 2-1) must be relaxed to satisfy the system of equations which 

now includes the integral constraints , continuity constraints and pitching-moment 

equation (2.87). 

Crossed airfoils are not excluded from the solution in any closed-form mathe-

matical way. Figures 2-14(a,b), for example, show an airfoil which was designed 

to have a constant velocity along the forward upper surface at 15° and a constant 

velocity along the forward lower surface at 0°. Even though the airfoil satisfies 

all the fundamental conditions, the airfoil is crossed. The problem stems from the 

high , trailing-edge velocity ratio. By empirical observation, the trailing-edge veloc-

ity ratio of finite-thickness, uncrossed airfoils is always less than one. Many inverse 

methods make use of this fact and allow for the adjustment of an inverse design pa-

rameter in order to match a specified trailing-edge velocity ratio. One shortcoming 

of this approach is that thicker airfoils generally have lower trailing-edge velocities 

than thinner ones, but the airfoil thickness is not known a priori , thereby making 

it difficult to preassign the proper trailing-edge velocity ratio . Also , the specifica-

tion of the trailing-edge velocity ratio is not a viable option for the design of airfoils 

having a finite trailing-edge angle for which the trailing-edge velocity is always zero . 
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Figure 2-14 Example of a crossed airfoil with high trailing-edge velocity ratio 
for (a) a= 15° and (b) a= 0°. 

(figure continues) 
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Besides the value of the trailing-edge velocity ratio , much can be deduced from 

the character of the velocity distribution in the vicinity of the trailing edge. Figure 

2-15 shows the trailing-edge velocity distribution and the trailing-edge shape for 

three, symmetric, 83 thick, cusped airfoils at 5° angle of attack . Only the last 

253 of chord is shown, and the vertical y / c-scale has been expanded to five times 

that of the x / c-scale. The trend is that the larger the drop in velocity (i.e. pressure 

recovery) at the trailing edge, the thicker the airfoil in the vicinity of the trailing edge 

(e .g, case a). If there is no drop in the velocity, the trailing edge is very thin (e .g., 

case b) . If the velocity shows an increase, the airfoil is usually crossed (e.g., case 

c and. case shown in figure 2-14) . While these comments are specific to symmetric 

airfoils such as those shown in figure 2-15 , the same trends are observed for non­

symmetric airfoils as long as the net velocity drop is considered. For example, if 

the velocity decreases on the upper surface by the same amount that it increases 

on the lower surface, there is a zero net velocity drop , and the airfoil will in such 

instance be thin at the trailing edge. 

The trend just identified must be translated into an equation if crossed airfoils 

are to be avoided in the design process . The high, trailing-edge velocity ratio 

for the airfoil shown in figure 2-14 is produced by the large negative values of 

KH (KH = -12.62) and KH (KH = -16.64) which control the closure recovery 

functions w1fH(<f>) and w1fH(<f>) . If KH and KH are small positive quantities (for 

example, 0.2), then the trailing-edge velocity distribution will decrease slightly as 

shown in figure 2-15 (a) . If they are both zero, there will be no decrease or increase 

in the velocity as shown in figure 2-15(b). For negative values, the velocity will 

increase-figure 2-15(c) being a mild case and figure 2-14(a) extreme. 

Practical experience has shown that normal trailing-edge velocity distributions 



v 

0 

{a) (b) (c) 

y1c -
~ = j 

=-
0.025 

~ ~ ~ 
-0.025 I I I I I I I I I I I I I I I I I 

0.75 

Figure 2-15 Impact of the trailing-edge velocity distribution on the shape 
of the trailing edge. 
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are determined not so much by the individual values of KH and K H but by their 

sum KH + K H. If the sum is in the range 0.0 to 0.8 , normal trailing-edge shapes are 

produced-the smaller the sum in this range, the thinner the airfoil in the vicinity 

of the trailing edge. Thus , as in the Eppler method (1957, 1990), 

Ks=KH+KH (2.88) 

serves as a useful equation to control the trailing-edge velocity distribution. Thus, 

by specification of Ks , crossed airfoils can be avoided and a desired trailing-edge 

thickness can be achieved . 

If an airfoil is to have a specified trailing-edge thickness parameter Ks and 

zero-lift pitching-moment coefficient , the system of equations includes the integral 

constraints (three equations), the continuity constraints (four equations for a four-

segment airfoil) and equations (2.87) and (2.88). Since there are now two additional 

equations, two more parameters (in addition to µ, µ, KH, K H and all Vi ' s except 

one) must be identified as unknowns . It might be possible to select parameters from 

table 2-1 or introduce new parameters which would allow the system of equations to 

be solved directly without recourse to iteration, but, as more equations are added 

to the system (as will be demonstrated), this rapidly reaches a point of diminishing 

returns. It is best to resort immediately to an iterative solution technique. To this 

end, multi-dimensional Newton iteration is used. 

For a prescribed Ks and cm0 , equations (2 .87) and (2.88) are represented as 

(2.89a) 

412
71" Rz = cm0 - 2 P( </>)sin 2¢ d</> 

c 0 
(2.89b) 

where R 1 and R 2 are the residues which are driven to zero by Newton iteration on 

parameters U1 and U2 taken from the inverse design parameters listed in table 2-1. 
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For each additional quantity prescribed, there will be an additional residue equation 

Ri and a parameter Ui admitted for iteration. In general, it is desired that 

R(-0) = o (2.90) 

Taylor series expansion of R(U) gives 

(2.91) 

where n is the current solution and n + 1 is the solution after the step 5U. Neglect 

of all terms higher than first order and taking R(-Or +1 = 0 as desired gives 

(2.92) 

This may be solved to give 5U which may then be used to update the solution 

(2.93) 

where w is a relaxation factor to be discussed later. Based on this solution vector 

-On+i, the residue R(Or+1 can be evaluated to see if it is within a prespecified 

tolerance. If R(U)n+l is not within the tolerance, On and R(-Or are replaced by 

-On+i and R(-Oyi+1 and the process is repeated until the tolerance is achieved. 

The iteration process begins by adding a small perturbation sequentially to 

each of the selected inverse design parameters used for iteration. The basic inverse 

equations (2.66) and (2.67) are then solved after which the residues are evaluated. 

The change in the residues is monitored to form the Jacobian 8R/8U which is then 

used to find the step size 5-0. If the Newton scheme attempts to take a step 5-0 

which is too large, the convergence of the solution can be disrupted. To prevent this 

from happening, a maximum step size for any of the unknowns -0 can be preset. 
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If any of the predicted step sizes at any point in the iteration exceeds a preset 

maximum (a maximum which is determined through experience with the method), 

then a fractional step ( w 5U) is taken to avoid exceeding a maximum. Another 

detail is that in the design of a new airfoil, the iterative process is taken in stages. 

In a typical case, Ks is first satisfied in order for the airfoil to be uncrossed. Then 

cm0 is sometimes specified to bring the airfoil into a normal range. After this , any 

additional Newton equations may be added in a logical order. 

The Newton iteration process is depicted schematically in figures 2-16 ( a-c) . The 

basi·c approach is shown in figure 2-16 (a). Figure 2-16 ( b) details the method used 

to determine the Jacobian, and figure 2-16(c) details the check for convergence. 

To demonstrate the capability of the Newton iteration procedure, an airfoil is to 

be designed such that Ks= 0.5 (to produce an uncrossed and normal trailing-edge 

shape), cm0 = -0.2 and t/c = 153. The airfoil shown in figure 2-14 is used as 

the first guess in the Newton iteration procedure. As mentioned, the process is 

taken in stages, the first of which is to satisfy Ks = 0.5 so that the airfoil becomes 

uncrossed. This is done by iterating on the leading-edge arc limit c/> 2 to result in 

the airfoil shown in figure 2-1 7 (a). Next the arc limit </>2 and velocity level v1 are 

iterated together to produce an airfoil with Ks = 0.5 and cm0 = -0.2, as shown in 

figure 2-17 ( b ). 

Before the desired maximum-thickness ratio t/ c is achieved, some remarks should 

be made regarding the choice of the parameters 4>2 and v1 used for iteration. The 

value of the leading-edge arc limit </> 2 is related indirectly to the range over which the 

leading-edge stagnation point moves for normal angles of attack. It is well known 

(e.g., Eppler 1957, 1990; Liebeck 1990) that the leading-edge stagnation point has a 

dramatic effect on whether or not the airfoil crosses. Consequently, c/>2 is selected as 
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Figure 2-16 Flow chart for Newton iteration: (a) basic approach, (b) determination 
of the Jacobian and ( c) check for convergence. 
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Figure 2-17 Airfoils produced by specifying (a) Ks= 0.5, and (b) Ks= 0.5, 
Cm0 = -0.2. 
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the parameter to control the trailing-edge thickness parameter Ks . The effect of v1 

on the pitching-moment can be explained by realizing that the adjustment of v1 , in 

turn , affects all the velocity levels v2 , V3 and v 4 through equations (2 .67 a-c ) . That 

is , iteration on the one prescribed velocity level implies having no control over the 

level of the velocity anywhere. Low-pitching moment airfoils (e .g., Liebeck 1970) 

are characterized by having a high upper-surface velocity along the forward part 

of the airfoil , while on the other hand, high-pitching moment airfoils (e.g., Somers 

1992) have , in comparison, a relatively low upper-surface velocity along the forward 

part of the airfoil. This connection between the velocity and the pitching moment 

is employed by iterating on the one prescribed velocity level to achieve a desired 

pitching-moment coefficient . 

In order to obtain the desired thickness ratio of 153, it is necessary to identify 

an inverse design parameter which affects the thickness . For the airfoil shown in 

figure 2-17 ( b ), the forward upper-surface and lower-surface velocity distributions 

were prescribed to be constant for angles of attack of 0° and 15° , respectively. 

An increase in the angle of attack above 15° will produce an increasingly severe 

suction peak on the upper surface at the leading edge which will eventually result 

in flow separation and stall. Likewise, a decrease in the angle of attack below 0° 

will produce a suction peak on the lower-surface leading edge, giving rise to flow 

separation and shortly thereafter negative stall. In approximate terms, the airfoil 

has a useable operating range from 0° to 15°. A decrease in the upper-surface 

design angle of attack by 2° to 13° and an increase in the lower-surface design angle 

of attack by 2° to 2° (while still satisfying Ks = 0.5 and cm0 = -.02) results in 

the airfoil shown in figure 2-18. From the foregoing discussion, it follows that 

this new airfoil will have a useable range from only 2° to 13°. By comparison, this 
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Figure 2-18 Airfoil derived from that shown in figure 2-17 ( b) with different 
design angles of attack for the upper and lower surfaces. 
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new airfoil has a narrower operating range and is t hinner t h an the one shown in 

figure 2-17(b)-26.43 vs. 32.43 . Consequently, the design angles of attack (which 

determine the operating range) may be used for iteration to achieve the desired 

maximum-thickness ratio. In particular, the thickness ratio is obtained by adding 

an increment ha to the upper-surface design angles of attack and subtracting the 

same increment from the lower-surface design angles of attack. With this approach, 

the 32.4 3 thick airfoil shown in figure 2-1 7 ( b) may be modified by iteration on the 

design angles of attack in the opposite fashion as mentioned in order to produce the 

desired 153 thick airfoil as shown in figure 2-19. 

The Newton iteration procedure is also employed to locate a segment junction 

in x i/ c and to allow specification of the design velocity distribution in arc length s . 

In order to specify an xi/ c location (for instance, the beginning of the recovery), the 

corresponding arc limit <Pi is used for iteration. Explicit specification of the velocity 

distribution v( s) for a segment would be inconsistent with the inverse formulation 

as presented [equations (2.60a-b )] . Equations (2.67 a-c) determine the value of 

the velocity at the beginning of each segment so it cannot be directly prescribed. 

Furthermore, the arc lengths along a segment is determined as part of the solution. 

It is consistent, however , to prescribe the relative design velocity vi( Si) subject 

to the condition vi( Bi = 0) = 0 since Vi( Ji = 0) = 0. A desired distribution 

vi(Si) is obtained through iteration on vi( Ji). The distribution vi(si) is satisfied at 

collocation points in </>i for the particular segment as indicated in figure 2- 7. Each 

collocation point thereby gives rise to another equation in the Newton system. As 

a practical matter, the relative arc length Si is normalized by the airfoil chord. 

The collocation points defining vi(Ji) and employed in the Newton iteration are 

specified as a percentage of the length of the segment <Pi - </>i-l · This prescription 
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Figure 2-19 Airfoil with Ks= 0.5, Cm0 = -0.2, and t /c = 15% at a= 9.96° 

and 5.04°. 
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on a percent age b asis is necessary since iteration on an ar c limit ¢1 or </Ji-l will 

change the length of the segment i. 

Another example is presented to illustrate the capability of prescribing the chord­

wise locations xi/ c and velocity distribution vi( si) . For the second and third seg­

ments , it is desired that v2(.52) = -0.50.52 and v3(s3) = 0.25.53 , respectively. The 

upper-surface and lower-surface recovery are prescribed to begin at 503 and 403 of 

chord, respectively. The airfoil is further constrained by specification of Ks = 0.3, 

cm0 = -0.05 and t / c = 253. Lastly, the trailing-edge angle is specified to be 10° 

or E = 1/ 18. Of course , since E appears explicitly in the equations, achievement 

of a particular trailing-edge angle does not require any iteration. To meet these 

design goals, iteration is performed on the limits ¢1, ¢2, <f;3, the velocity level v1, 

the design angles of attack O'.i through ha (as previously described) and the relative 

design velocity distributions v2 (J2 ) and v3 (J3 ). Figures 2-20(a,b) show the final 

velocity distributions at the resulting design angles of attack of 1.20° and 11.80°. 

As expected, the finite trailing-edge angle leads to zero velocity at the trailing edge. 

As depicted in figure 2-20 ( b ), showing v( s ), the desired relative velocity distribu­

tions v2 ( .52) and v3 ( s3) are achieved. The arc length and relative arc lengths are 

normalized by the airfoil chord giving Smaz/c = 2.1. In figure 2-21, the airfoil pro­

file and velocity distributions show that the desired recovery locations are obtained. 

Finally, Ks , cm0 and t / c also match the design specifications. 

Some further remarks should be made regarding the choice of the inverse design 

parameters used for iteration in order to achieve a set of airfoil characteristics . In the 

design of any new airfoil, Ks is usually prescribed to produce an uncrossed airfoil. 

As in the examples presented, the leading-edge arc limit can usually be iterated 

to drive Ks to the desired value. Alternatively, however , the single prescribed 
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velocity level or any, all, or part of the design angles of attack may be iterated 

in an attempt to achieve the desired Ks. Options are also included to change 

the slope of vi( Ji) along a segment or several segments. Iteration for prescribed 

thickness ratio or pitching moment is usually successful through adjustments in 

the velocity level or design angles of attack as shown. Several other options are 

available , however. The use of vi( Ji) to achieve a given vi(Si) is necessary. Also, if 

a segment junction is to have a specified xi/ c location, the corresponding segment 

arc limit cPi must be iterated. As a final remark, if the specified design requirements 

are realistic, convergence is usually assured so long as an appropriate set of inverse 

design parameters is used for the iteration. In this regard, going in stages, starting 

with the achievement of the desired Ks, then cm0 , etc., often provides valuable 

insight into potentially conflicting design requirements and helps to determine which 

inverse design parameters are best suited for iteration. 

2.2 THE VISCOUS DESIGN PROBLEM 

2.2.1 Formulation of the Problem 

Several schemes have been devised to achieve a desired velocity distribution, 

but, to achieve a desired boundary-layer development, there are only two common 

approaches. One approach (e.g., Liebeck 1976; Henderson 1978; Goettsching 1988) 

is to use an inverse boundary-layer method to determine the velocity distribution 

which yields the desired boundary-layer development, typically the shape-factor or 

the skin-friction distribution. The resulting velocity distribution is then used as 

input to a potential-fl.ow inverse method which provides the corresponding airfoil 

shape. 
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The disadvantage of this method is that only single-point design problems can be 

handled directly. Whether or not the resulting airfoil meets the multi-point design 

requirements is determined through post-design analysis. If discrepancies do exist, 

part of the velocity distribution is modified judiciously until the desired goals are 

achieved eventually. Another difficulty arises when the boundary-layer equations 

and the auxiliary equations may not be expressed in inverse form, for instance, if 

it were desired to prescribed the distribution of the linear stability amplification 

factor n. 

Another approach, that may be employed using almost any inverse airfoil method, 

dispenses entirely with the inverse boundary-layer solution as a driver to the inverse 

airfoil method. In an interactive, iterative manner, all of the design goals are met by 

adjusting the velocity distribution provided as input to the inverse method. Based 

on feedback from successive analyses and with some experience, the velocity distri­

bution may be changed in the direction necessary to bring the airfoil closer to the 

desired goals. 

It is instructive to illustrate this technique within the framework of the inverse 

method described in section 2.1. For this example, five segments are used as depicted 

in figure 2-22 . Attention, however, is focused on the third and fourth segments (on 

the lower surface) along which the velocity distribution v*(</>) is prescribed for the 

design angle of attack of 5° [figure 2-23 (a)]. After the specification of the remaining 

inverse design parameters, the inverse problem is solved to give the airfoil shape. 

The velocity distribution may then be plotted as a function of the arc length s as 

shown in figure 2-23 ( b ). Through the use of a direct boundary-layer method, the 

shape-factor distribution H 12 (s) may be computed and then plotted in the relative 

coordinate system consistent with the prescribed velocity distribution as shown in 



Figure 2-22 Circle divided into five segments and mapped to a five-segment 
airfoil. 
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Figure 2-23 Velocity distributions for the third and fourth segments at a -:- 5° 
plotted as a function of <P and s and the corresponding 
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figure 2-23 (c) . 

Now suppose that one of the design goals is to have H 12 = 3 for the fourth 

segment at the design angle of attack a= 5°. As shown in figures 2-24(a, b) , 

the relative velocity at the end of the third segment may be adjusted to achieve 

the desired initial condition: H 12 = 3. After having achieved this desired initial 

condition, attention is turned to the adjustment of the relative velocity distribution 

on the fourth segment so that H 12 does not change from the initial condition. Put 

differently, v4 (¢;4 ) is adjusted such that H1 24 (s4 ) = 0. Although it cannot be seen 

from figures 2-25 (a, b) , the solution V4 ( ¢4) for which fI 124 ( 84 ) = 0 leads to a slight 

change in the initial condition. If necessary, this process may be repeated until 

the shape-factor distribution for the fourth segment is within a set tolerance of the 

desired value of 3. 

From this simple example emerges the basis of a practical, viscous inverse de­

sign method. The velocity distribution (defined by the inverse design parameters) 

is iterated not to achieve a desired velocity distribution v( s) but rather to obtain. 

a desired boundary-layer development . One step in this process involves the per­

formance of several direct boundary-layer analyses to determine the residues in the 

Newton equations . 

2 .2.2 Direct Boundary Layer Method 

As an overview, once the airfoil is designed through the potential-fl.ow inverse 

design method described previously, the boundary-layer development may be de­

termined along each segment of the airfoil at the design condition for which some 

boundary-layer development is prescribed. The results of these calculations are 

then used to determine the residues necessary for Newton iteration. Depending 
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on the sophistication of the design approach and the design philosophy, a single 

design session lasting, say, less than an hour could easily involve over 100 direct 

boundary-layer analyses. In this case, a rapid boundary-layer analysis method is 

an essential ingredient for efficient interactive design. This requirement is satisfied 

presently through the use of an integral boundary-layer method, in particular, that 

based largely on the work of Eppler (1963a). 

To keep the computational time to a minimum, displacement-thickness effects 

are ignored and the prescribed boundary-layer developments are limited to those 

corresponding to attached flows. These restrictions pose no real practical limita­

tions, and the use of an integral boundary-layer method is the only viable option, 

yet it is certainly not an oversimplification. Airfoils in use on wings, tail surfaces, 

propellers, etc. operate for the most part as intended in efficient conditions-those 

for which the boundary layers are thin and attached over most of the surface. Un­

der these circumstances, the displacement thickness has only a small impact on the 

outer potential fl.ow and hence may be neglected without causing any appreciable 

discrepancies between predicted and measured performance. Solutions of the inte­

gral boundary-layer equations, although rapid, require careful consideration with 

regard to the choice of the laminar and turbulent boundary-layer correlations if 

the predicted boundary-layer development is to be an adequate representation of 

the boundary layer as governed by the Prandtl boundary-layer equations or, more 

generally, the Na vier-Stokes equations. 

For the laminar boundary layer, the Falkner-Skan family of profiles are exact 

solutions to the boundary-layer equations. Laminar boundary-layer solutions of the 

integral boundary-layer equations based on correlations derived from these similar 

profiles are found to be in close agreement with both finite difference solutions of 
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the boundary-layer equations (Drela 1986) and experimental results. For the tur­

bulent boundary layer, no exact solutions to the boundary-layer equations exist. 

Consequently, the validity of any proposed turbulent boundary-layer correlation is 

determined ultimately by a comparison with experimental results. The need for 

great accuracy in the boundary-layer closure correlations is somewhat reduced by 

the fact that they need be only accurate in the present case for incompressible 

boundary layers found typically in flows about airfoil shapes. The closure correla­

tions used currently are those due to Eppler (1963a). For airfoil flows, Eppler has 

derived turbulent closure correlations in terms compatible with the solution of the 

integral boundary-layer equations. These correlations were derived in part based 

on the work of Weighardt (1948), Ludwieg and Tillmann (1949) and Rotta (1952). 

As given by Eppler, the extension of this early work is based on empirical results 

and asymptotic methods. 

The prediction of transition from laminar-to-turbulent flow plays a vital role in 

the determination of the ultimate success of the boundary-layer method as a whole. 

Two different approaches have been implemented in the present work-an H-R 

method and an en method based on linear stability theory. Fortunately, the reliance 

on an accurate method of transition prediction is mitigated by the fact that on many 

airfoils there is a short region over which the adverse pressure gradient changes 

from mild to severe. Any transition method, no matter how sophisticated, can 

hardly miss the prediction of transition over such a short distance. The situation is 

complicated and accuracy is called into question when the pressure gradient is mild 

(either favorable or adverse) or when laminar separation takes place before turbulent 

transition is predicted. These are concerns involved mainly in low Reynolds number 

airfoil applications typical of sailplanes and model aviation. In the case of laminar 
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separation, transition usually takes place rapidly with reattachment ensuing shortly 

thereafter. Special considerations are necessary to treat the development of the 

so-called laminar separation bubble which forms between laminar separation and 

turbulent reattachment (e.g., Drela 1989; Dini 1990) . Careful account of the laminar 

separation bubble goes beyond the scope of the present investigation. If laminar 

separation is predicted before transition, transition is assumed to take place at that 

point-an assumption which is a close approximation to the true physics of the flow 

so long as the bubble is short. More details of the transition prediction methods 

are discussed later. 

It has been well-established that the combined method gives good predictions of 

airfoil performance (e.g., Eppler 1963b; Maughmer and Somers 1989; Somers 1992). 

Improvements to the boundary-layer method involve the modelling of the laminar 

separation bubble (if present), the incorporation of a displacement thickness itera­

tion (Eppler and Somers 1980b), the extension of the correlations to compressible 

flow (Drela and Giles 1986, 1987) or the solution of the boundary-layer equations by 

a finite difference method. While each of these may be viewed as an improvement to 

the analysis method, they may simultaneously be viewed as a hindrance which im­

pedes the design process by adding to the level of computation effort which curtails 

rapid feedback. As stated, rapid feedback is a necessity in design, and the addition 

of the Newton iteration, while simplifying the work of the designer, may already be 

viewed as impeding the attainment of this requirement. Further enhancements to 

the analysis method will await improvements in computer speed. 

2.2.2 .l Integral Boundary Layer Equations, Closure Correlations 

and Transition 

The integral momentum and energy equations are used in their standard form, 
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d52 82 dv 
ds = - (2 + H12)-:;; ds + CJ 

d53 353 dv 
- = --- +cv 
ds v ds 

with closure correlations expressed funct ionally by 

CJ = CJ(H12,R62) 

cv = cv(H12 , R 62) 
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(2.94a) 

(2.94b) 

(2.95a) 

(2.95b) 

(2.95c) 

for both the laminar and turbulent part of the boundary layer. In particular, for 

the laminar boundary layer, the Falkner-Skan family of profiles is used to give for 

attached flow: 

H12 = -5.967105263 + 6.578947368H32 

- J43.2825(0.907 - H32 ) 2 - 16 

and for separated flow: 

where 

H12 = - 14.9375 + 12.5H32 

g* 

CJ= Rv82 

- J156.25(1.195 - H32 ) 2 - 16 

g * = { - 0.067 + 0.01977(7·t~ -!!_1
;)

2
, H12 ~ 7.4 

- 0.067 + 0.022(1 - Hi~.-:_ 6 )
2

, H12 > 7.4 

(2.96a) 

(2.96b) 

(2.96c) 

(2.96d) 

(2.97 a, b) 



D* = 2 
{ 

0.207 + 0.00205( 4 - H 12 )
5

·
5

, 

0.207 - 0.003 ( 4 - H 12 ) 
2 1 + 0.02H12 
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(2.98a, b) 

These correlations, due to Drela and Giles (1986), give essentially the same cor-

relations as those due to Eppler (1963a). The difference is that these correlations 

are valid beyond the point of laminar separation. Although only attached flows 

are considered in the design method, the need for correlations beyond the point 

of laminar separation (H12 > 4) will be discussed later in section 2.2.2.2. It will 

also be explained there that the shape-factor correlation for separated flows, equa-

tion (2.96b), must be modified fo~ incorporation into the Newton solution. For the 

turbulent boundary layer, the correlations developed by Eppler (1963a) are used as 

H _ llH32+15 
12 - 48Hs2 - 59 

CJ= 0.045716[(H12 - l)R.s2 ] - 0 ·232exp( - 1.26H12) 

CD= O.OlOO[(H12 - l)R.s2 i-1/6 

(2.99a) 

(2.99b) 

(2.99c) 

where it is assumed that turbulent separation takes place when H32 = 1.46. 

For transition, either the short-cut H32 -Rt;
2 

method of Eppler (1963a, 1969, 

1990) or the en method of Dini, Selig and Maughmer (1991) is used. Alternatively, 

transition may be fixed at a point to model transition by a trip strip. A discussion of 

the H32-R.s2 method is left for Appendix Bin which the transition method is used to 

aid in the design of the NASA NLF(l )-0115 airfoil for general aviation application 

(Selig, Maughmer and Somers 1990). It should be noted that this airfoil was not 

designed using the current inverse design method as it was not developed fully at 

that time. In section 2.2.4, the present en method is used in the design of an airfoil, 

although the airfoil is not intended for practical application. A detailed discussion 

of the present en method is given in Dini, Selig and Maughmer (1991). Briefly, 
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t he linear stability am plification rates over a range of Falkner-Skan profiles have 

been calculated for a selected range of frequencies at Reynolds numbers up to those 

typically found on airfoils in application. In the analysis of an airfoil boundary 

layer via the integral boundary-layer equations , the database of the amplification 

rates is accessed to simultaneously track the growth of the amplification factors for 

several frequencies. Based on the envelope of these curves , each corresponding to a 

different frequency, the envelope may be calculated to give n( s ). When n( s) reaches 

a certain value , typically n = 9, transition is assumed to take place. 

As a test case , the amplification factor n was evaluated for a Blasius boundary 

layer at the dimensionless frequencies of 0.000100, 0.000075 and 0.000050 corre­

sponding to those analyzed by Jordinson (1970). Here the reduced frequency F , 

shown in the figure , is 27r f v / v 2 where f is the disturbance frequency, v the kine-

matic viscosity and v the boundary-layer edge velocity. As seen in figure 2-26 , the 

comparison indicates that the method does give the proper growth for n vs. R01 . 

2.2.2.2 Solution Procedure 

Equations (2.94a,b) are integrated with a second-order accurate Runge-Kutta 

scheme for the upper-surface and lower-surface boundary layers from the stagna-

tion point to the trailing-edge, with the potential-flow velocity distribution used as 

the boundary-layer edge velocity. The stagnation-point conditions, that is, initial 

conditions on 82 and 83 , are obtained through an asymptotic analysis procedure sim-

ilar to that given by Eppler (1963a). By the use of equations (2.96c,d) , equations 

(2.94a, b) are expressed alternatively as 

d82 82 dv c: * 
- = -(2 + H12)-- + --
ds v ds Rv82 

(2 .lOOa) 

d8a 38a dv H32D * 
-=---+---
ds v ds Rv82 

(2.lOOb) 
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Figure 2-26 Jordinson (1970) amplification factor curves as compared with 
present results for the Blasius boundary layer. 
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Equation (2.IOOa) will be considered for asymptotic analysis first. 

Near the stagnation point using the first term of the Taylor series , the velocity 

may be approximated by 
dv 

v= f::::.s ­
ds 

Substit ution of equation (2.101) into (2.lOOa) gives 

d52 t * 
f::::.sd = - (2 + Hi2 )62 + 

s Rdv 62 
ds 

(2.101) 

(2 .102) 

Wit h justification given later, it is assumed that , near the stagnation point, d52f ds 

is negligible. Making this assumption gives 

(2.103) 

or 

(2.104) 

The Reynolds number and the velocity gradient are known. Thus, from equation 

(2.104) , the stagnation-point momentum thickness 52 may be found so long as the 

shape factor H 12 is known at the stagnation point. 

The stagnat ion value of H 12 is obtained through both the asymptotic form of 

the momentum equation (2.104) and the energy equation. The use of expression 

(2.101) in the energy equation (2.lOOb) gives 

d6 H D* 
f::::.s-3 = - 383 + 32 

ds dv 
R - 82 

ds 

Again, with later justification, d83 / ds is assumed to be negligible, giving 

H32D* 
383 = ---

Rdv 82 
ds 

(2.105) 

(2.106) 
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Division of equation (2 .106) by (2 .103) yields , 

(2.107) 

which is a single equation for the value of H 12 at the stagnation point . The solution 

of this equation gives H1 2 = 2.24009159 which, when used in equation (2 .104), 

provides the initial condition for the momentum thickness, that is , 

o, = 0.290352908 ~ 1 
Rdv 

ds 

(2.108) 

Through equation (2.96a) , with H12 = 2.24009159 , it is found that H32 = 1.62008219 

at the stagnation point . Thus, since H 32 53 / 52 , the initial condition on the energy 

thickness is given by 

(2.109) 

J usti:fication for this asymptotic procedure at the stagnation point is explained 

as follows. From equation (2.104), it is indeed true that d82f ds = 0 so long as 

dH12/ ds = 0. Proof of this comes from equation (2.107) which shows that H12 is 

constant or dH12 /ds = 0 if d53/ds = 0. From the correlation (2.96a) , dH12/ds = 0 

implies that dH32f ds = 0. Since dH32/ds = (52 1)d53/ds - (b3b2 2)d82f ds together 

with d52f ds = 0 and dH32 / ds = 0, it must in fact be true that d53/ ds = 0. 

Consequently all the assumptions are consistent, and equations (2.108) and (2.109) 

represent a valid asymptotic solution. 

Since only attached flows are considered, a special problem is encountered if, at 

some point in the Newton iteration, laminar separation is reached before transition. 

An excursion of this sort is entirely conceivable even though the final boundary-

layer development will be attached along the design segment at the prescribed 

design condition. Conventional integral boundary-layer solution techniques at the 
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point of laminar separation switch from a treatment of the velocity as the inde­

pendent variable to its treatment as a dependent variable; that is, it follows from 

the solution. What is given instead of the velocity is another variable , such as the 

shape of the separation streamline (Ingen 1975) or the distribution of the shape 

factor (e .g., Dini 1990) which approximates the development of the ensuing laminar 

separation bubble. The integral boundary-layer equations are then solved in an 

inverse mode. An entirely different approach is to solve the problem through the 

inverse boundary-layer equations by specifying a boundary-layer property and cal­

culating the corresponding boundary-layer edge velocity (e .g., Cebeci 1976; Stock 

1988; Whitfield et al. 1982). 

The need to approach the solution in either of these two ways is guided not only 

by physical observation, in that it would be improper to give the potential-flow 

velocity distribution beyond separation, but also by clues found in the governing 

equations. The shape-factor correlations (2 .96a,b) are only valid for H 32 ;::: 1.515 

whether or not the flow is attached or separated. Attempting to solve the integral 

boundary-layer equations beyond the point of separation with a boundary-layer 

edge velocity given by potential-flow theory will yield a shape factor H 32 < 1.515 

which is not within the bounds of the correlations. 

To circumvent this difficulty and to integrate in the direct mode beyond the point 

of laminar separation, the present method replaces equation (2.96b) for separated 

flow with a fictitious shape-factor correlation given by 

H12 = 7 .jl.515 - H32 + 4, H32 < 1.515 (2.110) 

This equation merely serves as a means to continue in the direct mode beyond lam­

inar separation without having to resort to an inverse boundary-layer method. Of 

course, the solution beyond the point of laminar separation will no longer be a valid 
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boundary-layer development. Nevertheless, the final solution after iteration will 

yield the desired, i.e. prescribed, attached boundary-layer development for which 

the correlations are still perfectly valid. 

As a check on the method, the airfoil shown in figure 2-27 was analyzed at 

R = 1 x 106 and a = 10° by the present computer program and the program 

discussed in Eppler (1988). A comparison of the predicted shape-factor development 

is shown in figure 2-28. Slight discrepancies, largest near the stagnation point , are 

most likely due to slight fluctuations in the velocity distribution computed by the 

panel method as compared with the velocity distribution used as input to the present 

inverse method. Nevertheless, the agreement is excellent , not only for the shape­

factor development (as shown), but also for the other boundary-layer variables. 

2.2.3 Multi-Dimensional Newton Iteration in Viscous Design 

In the example illustrated in figures 2-22 through 2-25, the shape factor H 12 at 

the beginning of the fourth segment ( s = s 3 ) is specified as 3. This value is obtained 

finally by the adjustment of the slope dv3 / dJ3 through the specification of relative 

design velocity distribution at the end of the third segment and assuming a linear 

variation along the segment. In terms of the Newton iteration scheme dv 3 / dJ3 

becomes the unknown in order to satisfy the Newton equation 

0 = H12(s3) - 3 (2 .111) 

where the notation '==>'means that this inverse design parameter is used for iteration 

and has a first-order effect on the corresponding Newton equation. It further serves 

as an aid in keeping an equal number of equations as unknowns. 

For the fourth segment , the relative design velocity distribution v4 ( J4o) is ad-
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Figure 2-27 Airfoil used for a check on the boundary-layer analysis method. 
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Figure 2-28 Comparison between the shape factor (H32 ) distribution predicted 
by the present boundary-layer analysis program and the Eppler 
program for the airfoil shown in figure 2-27 
at R = 1 x 106 and a= 10°. 
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justed such that H124 ( 54 ) = 0, that is, through Newton iteration 

(2.112) 

The numerical problem, however, must be discretized for incorporation into the 

Newton system. The design velocity distribution v4 ( J4 ) is defined by a desired 

number of moveable spline supports as shown in figure 2-7. For the three nodes 

shown, the following three equations must be satisfied. 

v4(¢4=¢!) :::} o = iI124(s4 = s!) (2 .113a) 

- - -2 v4( <f>4 = </>4) :::} o = iI124(s4 = :s~) (2.113b) 

- - -3 
V4(<f>4 = </>4) :::} o = fI124 (s4 = s!) (2.113c) 

The superscripts indicate the index of the nodes in terms of the arc limit </>4 and 

the corresponding nodes in 54 • 

As discussed in section 2.1.9, an arc limit <Pi between two segments can be 

iterated to correspond to a specified xi/ c (or si/ c) location as 

0 = xi/c - p (2.114) 

where pis the value of the generic desired parameter. More generally the arc limit 

may be adjusted so that a specified boundary-layer property is reached at that 

location. For example, <Pi may be iterated to correspond to the point where the 

linear stability amplification factor is a value of 9 for a given operating condition, 

i.e. 

O=n(si)-9 (2.115) 

The relative design velocity distribution for a segment may be used to control 

the relative boundary-layer shape-factor distribution as previously mentioned, the 
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relative velocity distribution in Si or any one of another desired distributions. For 

example, either the local geometry may be specified, then-development, or a curve 

in the H32 -R~2 diagram used in the Eppler method for predicting transition. 

2.2.4 Application of the Method 

Two example airfoils are presented to illustrate some of the capabilities of the 

method. Again, these airfoils serve only as examples of the method and are not 

intended for practical use. The main design goals, although defined in mathemat-

ical detail later, may be stated as follows . Along the forward part of the upper 

surface of the airfoil, the n-development is prescribed at the design angle of attack 

and Reynolds number. Following this segment, a linear ramp is introduced for a 

different angle of attack. On the lower surface, at yet a different angle of attack, 

the boundary-layer shape-factor distribution is prescribed much like the example of 

figures 2-23 through 2-25. 

These characteristics are obtained by an airfoil with seven segments-four on 

the upper surface and three on the lower. All of the inverse design parameters are 

listed in table 2-2 below, with the exception of the trailing-edge angle parameter€. 

Table 2-2: Inverse Design Parameters for a Seven-Segment Airfoil 
i cf; a*(c/;) v*(c/;) 
1 [O, c/;1] a1 v1, w( cf;; cPH", c/;s, cPF, µ, KH, K) 
2 [c/;1,c/;2 ] a2 V2, V2( ~2) 
3 [ c/;2' cP3 J 0'.3 V3' V3 ( J3) 
4 [c/;3' cf;4] 0'.4 V4,V4(¢4) 
5 [c/;4, cPs] 0'.5 vs,vs(Js) 
6 [ c/;s, cP6] 0'.5 V5, V5( J6) 
7 [cf;5,27r] 0'.7 v1, w(c/;; <f>n-, <[>5 , {f>F, µ, K H, K) 
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Many of these parameters are selected as unknowns in the Newton iteration in 

order to match the design goals , but for those which are left unchanged the following 

values are used. 

a1 = a2 = 10° 

a3 = a4 = 15° 

<Ps=l5°, 

</JF = 10°, 

€ = 1/ 18 

ef>s = 340° 

(/>F = 350° 

(2.116a) 

(2.116b) 

(2.116c) 

(2.116d) 

(2.116e) 

(2.116/) 

(2.116g) 

The value for €is selected to yield a 10° trailing-edge angle and the arc limits <Ps , 

°ef>5, <PF, and ef>F are set to confine the closure and the finite trailing-edge angle 

contributions of the pressure recovery to a small region near the trailing edge. The 

small values for K and K which define in part the main pressure recovery [equation 

2.61( a)] will give a slightly adverse pressure gradient at the beginning of the recovery 

on the upper surface and lower surface at the corresponding design angles of attack 

a 1 and a1, respectively. 

As discussed in section 2.1.9, the design goals are matched in stages. In this 

example case, the process is taken in the order of increasing complexity. First, the 

leading-edge arc limit ¢4 is iterated to match Ks. The leading-edge arc limit ¢4 

and the velocity level V1 are then iterated together to achieve the desired Ks and 

cm0 as 

¢4 =? 0 = Ks - 0.4 

Vi =? 0 = Cmo + 0.25 

(2.117a) 

(2.117b) 
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Next, the remaining arc limits are iterated to correspond to specified si/c locations 

by 

</>1 ::::} 0 = si/c - 0.25 (2.118a) 

</>2 ::::} 0 = sz/c - 0.40 (2.118b) 

ef>3 ::::} 0 = s3/c - 0.90 (2 .118c) 

<f>5 ::::} 0 = s5/c - 1.20 (2.118d) 

</>6 ::::} O=s5/c-l.70 (2.118e) 

After this, the relative design velocity distribution on the second segment is 

iterated to produce a linear velocity distribution in s at the design angle of attack 

a 2 = 10° . Specifically, 

(2.119) 

where now 52 is measured in the direction from s2 to s1 , that is, .5 2 = s2 -s (opposite 

to that shown in figure 2- 7). Figure 2-29 shows portions of the velocity distribution 

for the design angles of attack a = 8°, 10° and 15°. For the a = 10° case, it is seen 

in the figure that the desired linear variation (in boldline) is obtained for the second 

segment. The a = 8° and 15° cases are pertinent to the remaining lower-surface 

and upper-surface design requirements, respectively. 

For the lower surface, the boundary-layer shape factor is prescribed to be H 12 = 

2.8 for the sixth segment at a 6 = 8°. This is achieved as in the illustrated example 

of figures 2-22 through 2-25 by iterating on the preceding segment to match the 

desired initial condition at s = s 5 and by the adjustment of the relative design 

velocity distribution along the sixth segment to maintain H 12 = 2.8, that is, 

dv5/d¢5 =? O=H12(s5)-2.8 

v5(¢6) ::::} o = iI126U6) 

(2.120a) 

(2.120b) 
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Figure 2-29 Partial velocity distributions corresponding to the design conditions 

(smaz = 2.067). 
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As shown in figure 2-30, this shape-factor distribution is achieved by the velocity 

distribution shown in figure 2-29 for a = 8°. 

On the upper surface, the n-development is prescribed for the third segment at 

the design conditions a 3 = 15° and R3 = 1 x 106 • The initial value of n = 2 is set 

by adjusting the velocity distribution of the fourth segment ( s = S3 ), i.e. 

0 = n(s3) - 2 (2.121) 

The velocity distribution for the third segment is adjusted to give the desired linearly 

increasing n-growth given by 

o = n3(S3) - 14.53 (2.122) 

where this time .53 is measured from s3 to s2, that is, s3 = s3 - s. 

Since the length of the segment is s 3 - s 2 = 0.5 with an initial value of n = 2 

and slope of dn/ ds = 14, the value of n at the end of the segment is 9 corresponding 

to the point of transition. As shown in figure 2-30, this desired n-growth, based on 

the analysis method of Dini, Selig and Maughmer (1991), is achieved. Finally, the 

airfoil shape and the velocity distributions at the design angles of attack are shown 

in figure 2-31. 

While the preceeding airfoil illustrates the prescription of laminar boundary­

layer developments, this next airfoil is designed for a certain turbulent boundary­

layer development . In particular, the upper-surface recovery distribution is pre­

scribed to be near separation as was first studied by Wortmann (1955). The airfoil 

to be presented employs an upper-surface pressure recovery much like the Stratford 

pressure recovery used by Liebeck and Ormsbee (1970) and Miley (1974). While it 

is not suggested that the use of a Stratford distribution is necessarily ideal, such an 

example does represent an interesting limiting case. 
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Figure 2-30 Partial boundary-layer developments corresponding to the design 
conditions (R = 1 x 106 for then-development). 
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Figure 2-31 Airfoil and velocity distributions for a: = 8°, 10° and 15°. 
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Without going into all the details, the airfoil shown in figure 2-32 was designed 

to have for a = 18° and R = 1 x 106 , a shape-factor distribution H32 = 1.65 

along the upper-surface pressure recovery from a point just past the flat rooftop 

to approximately 0.8c. This distribution was achieved in the same way that the 

previous example achieved a constant shape-factor distribution [H 12 (s)] over the 

forward lower surface. A short segment after the flat rooftop was iterated to make 

H 32 = 1.65 at its end. Then, the relative design velocity distribution of the follow­

ing segment extending back to approximately 0.8c was iterated so as to keep H 32 

constant (or H32 = 0). The resulting shape-factor distribution for the upper surface 

is shown in figure 2-33. 

2.3 THE DIRECT ISOLATED AIRFOIL PROBLEM 

The direct or analysis problem has been treated in various ways by confor­

mal mapping; however, practically all of these may be traced back to the work of 

Theodorsen (1931) and Theodorsen and Garrick (1933). The so-called Theodorsen 

method involves two mappings to go from the airfoil to the circle. First, the inverse 

Joukowski or Karman-Treffetz mapping is used to take the airfoil into a 'near' circle. 

A second mapping (determined by iterative means) is then used to take this near 

circle into an exact circle about which the flow is known. Working backwards, the 

velocity about the airfoil is finally obtained. To discuss the details of Theodorsen 's 

method would go beyond the scope of the present investigation. Rather, the pur­

pose here is to present a new analysis method which, like Theodorsen 's method, 

uses conformal mapping and involves an iterative solution technique. Other than 

this , however , the two methods are not similar. 

The present analysis method differs from that of Theodorsen's in that the trans-
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Figure 2-32 Airfoil and velocity distribution for a = 18° for prescribed 
turbulent boundary-layer development. 
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Figure 2-33 Boundary-layer shape factor (H32 ) for airfoil shown in 
figure 2-32 (a= 18°, R = 1 x 106 ). 
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formation from the airfoil to the circle is done in one step (rather than two), and the 

mapping derivative [equation (2.2)] is used (rather than the mapping itself) . The 

analysis procedure begins by considering the conjugate harmonic function Q( </>) 

which is repeated from equation (2.20): 

Q(cp) = 8*(cp) + 7r*(</>) - cp/2 + E(7r/2 - cp/2) (2.124) 

As indicated in figure 2-2 and equation (2.15) for a given angle of attack, 8* ( </>) 

jumps by -7r at the stagnation point while 7r*( </>) jumps by 7r at the stagnation 

point. In effect, these jumps cancel in which case 

8(¢>) = 8*(¢>) + 7r*(<P) (2.124) 

where 8( </>) is simply the surface angle about the airfoil contour. Thus, equation 

(2.123) becomes 

Q(cp) = 8(cp) - cp/2 + E(7r/2 - cp/2) (2.125) 

In the analysis problem, the surface angle 8( s) about the given airfoil may be 

computed. If it is known where points about the circle ( ( = (c = ei <P) map to points 

about the airfoil, that is, ifs(</>) is known, the surface angle about the airfoil may be 

expressed as a function¢>, viz. 8(¢>). In this case, Q(</>) is known by equation (2.125) 

which leads to P(cp) . From P(</>), the velocity distribution is obtained, and if desired 

from P( </>) and Q( </>) the mapping derivative can be found. Thus, the derivative of 

the mapping follows directly from s(<f>). Of course, in the analysis problem, s(</>) 

is not known a priori, and as a result the mapping derivative is not computed so 

easily. Consequently, the solution of the problem revolves around s( </> ). 

While s( </>) is not known a priori, it may be estimated as si ( </>) where the super­

script ( )i denotes the i-th estimate. The only requirements are that si(<P = 0) = 0, 
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si ( ¢ = 27r) = Sm ax and that 5i ( ¢) increases monotonically so there is a one-to-one 

correspondence between points about the airfoil and points about the circle. From 

this estimate si(¢) , the surface angle about the airfoil may be estimated as 0(¢). 

An estimate of the conjugate harmonic function is then given by 

(2 .126) 

To proceed from here by computation of an estimate of P( ¢) as pi ( ¢) and then 

the mapping derivative would ignore the conditions on the mapping coefficients. As 

a result, the estimates pi ( ¢) and (i ( ¢) would not necessarily satisfy the integral 

constraints in which case the mapping derivative would not necessarily result in a 

closed airfoil or give a velocity distribution compatible with the freestream. 

From the estimate Ci(¢), a better estimate {i+ 1 ( ¢) may be formed in such 

a way that it satisfies the conditions on the mapping. From equation (2.18), the 

conjugate harmonic function is expressed as 

(/ ( cP) = b~ + b~ cos cP - a~ sin cP + b~ sin 2¢ - a~ sin 2¢ + ... (2.127) 

By equations (2.5b) and (2.7a,b), the new estimate Qi+1 (¢) based on Qi(¢) must 

have bl = 0, bi = 0 and ai = 1 - E. This new estimate may be formed by 

(2.128) 

where 

(2.129a) 

(2.129b) 

(2.129c) 
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Substitution of equation (2.127) into (2.128) gives for the new estimate 

(/+1(¢) = -(1 - E) sin </J +;;;COS 2</J - a; sin 2</J + · · · (2 .130) 

which now does satisfy the conditions on the coefficients . 

Equation (2 .130) may be derived through an alternative approach which , in 

Chapter 3, will prove useful in the analysis of cascades . This alternative approach 

involves the satisfaction of the conditions on the coefficients by use of the three inte-

gral constraints on Q( ¢ ). The new estimate based on the old estimate is expressed 

as 

(2.131) 

By the integral constraints (2 .51 a-c), it is required that the new estimate satisfy 

(2 .132a) 

(2.132b) 

(2 .132c) 

Substitution of equation (2.131) into the integral constraints (2.132) yields three 

equations for the three unknowns to give 

1 127r A• 

k1 = -- Qt(¢) d¢ 
27r 0 

(2 .133a) 

1 127r A• 

k2 = -- Qt(¢)cos¢d¢ 
7r 0 

(2.133b) 

1 127r A • 

k3 = E - 1 - - Qt (¢)sin ¢ d¢ 
7r 0 

(2.133c) 

By comparison with equations (2.129a-c) and (2 .128), it is seen that substitution 

of equations (2 .133a-c) into (2.133) yields the same result for {Ji+l ( ¢) as equation 

(2 .130) . 
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With this new estimate (/+1(¢), fti+ 1(¢) is obtained. From equation (2 .23 ), 

the new estimate si+l ( ¢) is given from fti+l ( ¢) by 

(2.134) 

Based on this new estimate for s( ¢ ), the process is repeated until successive esti­

mates cease to show a significant difference. 

To illustrate the approach, the airfoil shown in figure 2-27 is analyzed for the 

velocity distribution at a = 10°. In this case, the successive estimates for s( cf>) may 

be compared with the true solution obtained from the inverse method. The given 

surface angle for the airfoil shown in figure 2-27 is depicted in figure 2-34. The 

first estimate for s(cf>) is shown in figure 2-35 by the straight line from (0, 0) to (27r, 

Sma:r). Also shown in the figure are the successive estimates for the second, fourth 

and sixth iterations. As may be seen, the sixth iteration agrees almost perfectly 

with the true solution. As a point of interest, the mapping derivative for the second, 

fourth and sixth iterations is obtained and used to derive the airfoil corresponding 

to that stage of the iteration. The results are shown in figure 2-36. For clarity, 

the successive airfoils and the true airfoil are shown as computed directly from the 

mapping derivative. As may be seen, the mapping of the circle to the airfoil improves 

progressively, and after six iterations the airfoil generated is almost coincident with 

the true airfoil. Twelve iterations were required for convergence of the solution. 

In figure 2-37, the velocity distribution for a = 10° from the converged solution 

is compared with the true velocity distribution from the inverse method. As seen 

from figure 2-37, some discrepancies do exist. It is believed that these differences 

are caused by an insufficiently accurate integration scheme. Improvements in the 

integration will most likely lead to better agreement. 
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Chapter 3 

INFINITE CASCADES OF AIRFOILS 

Conceptually, what has been already been stated with regard to isolated airfoil 

design is equally applicable to cascade design. Specifically, a multi-point design 

capability is as important for cascades as it is for isolated airfoils . The same is 

true of the viscous design aspects of the problem and the need to achieve a given 

thickness ratio, pitching moment, etc. Of course, with a cascade, there is usually 

interest in achieving a desired stagger or solidity as defined in figure 3-1. This 

chapter will present a method that allows for multi-point inverse cascade design 

in a manner analogous to that presented in chapter 2 for the isolated airfoil. The 

viscous design part of the problem is, however, left for future extension of this work. 

The determination of flows through infinite cascades by means of conformal 

mapping has developed along lines similar to those of the isolated airfoil. The ear­

ly work of Joukowski (1916) and Weinig (1935) among others dealt mainly with 

the generation of exact solutions for flat plates in order to ascertain the basic flow 

patterns and correlate the turning angles with cascade stagger and solidity. Collar 

(1941) and Merchant and Collar (1941) were the first to generate exact solutions for 

cascade blades with finite thickness and camber in a manner somewhat analogous 

to the Joukowski airfoil problem. Using Theodorsen's method for isolated airfoil 

analysis, Garrick (1944) and Howell (1948) were among the first to solve the cas­

cade analysis problem. Lighthill (1945b ), Costello (1950), Costello, Cummings and 

Sinnette (1952), Rosenblatt and Woods (1956) and Papailiou (1967) have developed 

inverse methods, yet they allow only for single-point inverse cascade design. The 

lack of an existing method for multi-point inverse cascade design has provided the 
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impetus for this initiative. 

That it must be possible to do multi-point inverse cascade design by conformal 

mapping is best illustrated by considering the derivative of the mapping function 

expressed as 

dz 

d( -
dF/ d( 

dF/ dz 
(3.1) 

where the z-plane is the physical cascade domain, (-plane is the mapped domain, 

and Fis the complex potential function known in the (-plane based on conditions in 

the physical plane. It is important to keep in mind that the mapping only relates the 

geometry between the two planes (even though in the inverse problem the mapping 

is ultimately determined from the desired velocity distribution). 

First to be discussed is the single-point inverse airfoil design problem in which 

the circle is mapped to an airfoil. For a given angle of attack a, the airfoil design 

velocity distribution v0 (ef>) is prescribed. Since dF/ dz [ = v(<f>)e-iB(<P) ] on the airfoil 

is an analytic function of </>, the fl.ow direction 8( </>) may be obtained from v( </>) 

to form dF / dz. Thus, to prescribe v( </>) is to prescribe dF / dz, so, for discussion, 

prescribing the velocity distribution v( </>) is taken to mean prescribing dF /dz. Of 

course, the velocity distribution must satisfy the integral constraints which arise 

from the conditions imposed on the mapping function; however , for the present 

discussion, it is not necessary to be concerned with this detail. Having prescribed 

the airfoil velocity distribution for the desired angle of attack, dF / dzl o: p the circle 

velocity distribution at the same angle of attack is obtained, viz.- dF / d(l cw Taking 

the ratio of these velocity distributions according the equation (3.1) gives dz / d( 

from which the airfoil coordinates are then obtained by integration. 

For multi-point inverse airfoil design, the key difference is that dz / d( is de-

termined piecewise. For example, suppose that the airfoil upper-surface velocity 
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distribution is prescribed for a 1 and the lower-surface for a 2 . The mapping deriva­

tive is then defined in two pieces: dF/ d(l0: if dF/ dzl 0: 1 on the upper surface and 

dF / d( I a: 2 / dF / dz I a: 2 on the lower surface. Of course, now dF /dz must satisfy not 

only the integral constraints for multi-point design but also the continuity condi­

tions at the leading edge and trailing edge so as to maintain a piecewise continuous 

dz / d(. This is another detail which is of no immediate concern. Introducing an ad­

ditional segment with a new angle of attack only means defining dz / d( by another 

piece and so on for each new segment. 

With respect to multi-point design, the inverse cascade problem and inverse 

airfoil problem are fundamentally the same. The inlet (or outlet) angle of the 

cascade may be considered as analogous to the airfoil freestream angle of attack. 

Thus, in the multi-point design case, the cascade velocity distribution is prescribed 

at the desired inlet (or outlet) angle for each of the desired number of segments. 

Taking the ratio of the velocity distribution in the mapped domain at the conditions 

corresponding to the prescribed cascade velocity distribution for each segment gives 

the mapping derivative in a piecewise manner from which the cascade blade is 

determined . 

The solution to the inverse cascade design prob.lem by conformal mapping is dif­

ferent from the inverse airfoil problem in that for the cascade no standard approach 

exists. There are many viable ways to express the mapping and many reasonable 

domains onto which the cascade can be mapped. Typically, several mappings are 

used in sequence to take the cascade into a circle or circles. For instance, Garrick 

(1944), Howell (1948) and Papailiou (1967) first use a suitable periodic mapping, 

for example, tanhz = f(z'), to take the cascade [figure 3-2(a)] into a single closed 

contour in the z'-plane [figure 3-2 (b)]. In this plane, points far upstream and down-
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Figure 3-2 Typical mapping sequence used to take a cascade into a circle 
in the presence of two spirals: (a) cascade, ( b) single closed contour 1 

( c) near circle and ( d) circle. 

!Adapted from Scholz (1965).] 
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stream of the cascade are represented by a vortex-source and vortex-sink (spirals), 

respectively. Both of these spirals are at a finite distance from the single contour. 

Then through one or more regular mappings, this closed curve is taken to a nearly 

circular contour [figure 3-2 ( c )] . Finally, Theodorsen 's method is used to map this 

near circle [figure 3-2 ( d)] to an exact circle about which the_ flow is known analyti­

cally. In a similar procedure, Traupel (1945) and Ives and Luitezmoza (1977) solve 

the problem on the interior of the domain, except Traupel does not go completely 

to the circle. 

In a different approach, Lighthill ( 1945 b) uses as a first mappmg ez = z' to 

map the cascade into a single airfoil in the presence of a single spiral as shown in 

figure 3-3. In this case, points infinitely far upstream of the cascade are mapped 

to a vortex-source at a finite distance from the airfoil; whereas, points infinitely far 

downstream of the cascade are mapped to infinity. In the next step, the mapping 

derivative is introduced to take the airfoil in the presence of the vortex-source into 

a circle in the presence of the vortex-source. 

For either one of these mapped domains, the cascade stagger and solidity are 

mainly related to the location of the spirals (figure 3-2) or spiral (figure 3-3) relative 

to the circle. The single-spiral case is to be considered for discussion, although 

similar arguments apply to the double-spiral case. In the design problem, the spiral 

location is specified in order to control (to first order) the stagger and solidity; 

whereas, in the analysis problem, the spiral location is determined by the geometry 

of the cascade. As the solidity of the cascade increases, the spiral moves closer to 

the circle. This may be explained as follows. Consider the cascade spacing to be 

a constant set by the mapping so that the solidity is changed only by the chord of 

the cascade blade. Because the spiral is mapped to infinitely far upstream of the 
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Figure 3-3 Lighthill 's mapping sequence used to take a cascade into a circle 
in the presence of one spiral: (a) cascade, ( b) single closed contour 

and ( c) circle. 
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cascade, points very near the spiral tend to be mapped far upstream. Thus, as the 

spiral moves closer to the circle, the part of the circle nearest the spiral stretches 

upstream in the cascade plane; that is, the cascade-blade chord increases which in 

turn increases the solidity. 

There is a practical limit to which the solidity may be increased by moving the 

spiral closer to the circle. For solidities greater than one (i.e., cascade spacings 

less than one chord), the spiral must be so close to the circle that the amount of 

stretching on the circle in the vicinity of the spiral can lead to cascade blades with 

only a few points left to define the leading edge (assuming that a practical number of 

equiangular points are used to define the circle). Examples will be presented later. 

This numerical difficulty renders methods which map to the single circle practical 

only for solidities up to one. 

For solidities greater than one, other mapped domains have been successful. 

For instance, a suitable mapping is to take a cascade of ovals (Collar 1941; Collar 

and Merchant 1941; Gostelow l965a,b) or circles (Goto and Shirakura 1984) into 

a cascade of airfoils. In a novel approach, Shirakura (1972) maps the annulus 

between two concentric circles in the presence of a vortex-source and vortex-sink into 

the infinite cascade. Another approach was suggested by Sanz (1988, 1991). The 

region exterior to an ellipse with points at infinity represented by a vortex-source 

and vortex-sink is mapped into the cascade. The advantage of using the ellipse as 

opposed to the circle is that the ellipse is elongated and does not therefore require as 

much stretching as the circle in order to give solidities greater than one. A difficulty 

associated with each of these methods, except the case of the ovals, is that the 

complex potential function in the mapped domain must be determined numerically. 

(Other mathematical difficulties are associated with the use of the ovals in the 
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inverse problem.) ·with the single circle , however , the complex p otential function is 

readily obtainable using the Milne-Thomson circle theorem (Milne-Thomson 1958) . 

In the current approach, the cascade is mapped onto the single circle in the 

presence of a vortex-source. Therefore, from a practical standpoint in light of the 

aforementioned remarks, the method is only applicable for the design cascades with 

solidities up to one due to numerical difficulties that are otherwise encountered. As 

will be explained in detail later , the mapping is done in one step by introducing 

a general form of the mapping derivative. Using a single mapping and expressing 

the mapping in the derivative form greatly facilitates the mathematical formulation 

of the multi-point inverse design problem and leads to considerable numerical sim­

plification as compared with the (less general) single-point inverse design methods 

(Lighthill 1945b; Costello 1950; Costello, Cummings and Sinnette 1952; Rosenblatt 

and Woods 1956; Papailiou 1967). 

As a preliminary, a new, exact solution of the flow through an infinite cascade 

of airfoils with finite thickness and camber is presented for two reasons. First , the 

exact solution is new and considered valuable in itself. Second, the solution helps 

to establish some of the ideas applied in the inverse problem presented afterwards. 

Previous to the current approach, the only known exact solution to the flow through 

a cascade with blades of finite thickness and camber was due to Collar (1941 ), later 

extended by Merchant and Collar (1941) and Gostelow (l965a,b). The method 

of Collar (1941) is partly analogous to the Joukowski airfoil problem yet three 

mappings are used. As a result, the mathematical development is lengthy. In 

contrast, the current solution involves only a single mapping (one which has a 

very close connection to the Joukowski mapping). Moreover, the mathematical 

development is substantially simpler. 
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3.1 EXACT SOLUTIONS TO THE FLOW THROUGH INFINITE 

CASCADES OF AIRFOILS 

It should be mentioned that exact solutions have application in assessing the 

accuracy of potential flow analysis methods. The most well-known and widely­

referenced test case for such analysis methods is due to Gostelow (l965a,b) wherein 

tabulated data is provided only for one cascade at one inlet angle. As mentioned, 

the generation of further exact solutions from the theory of Gostelow is involved. 

The current approach provides a means of obtaining exact solutions in a relatively 

straightforward manner. It is surprising to the author that the current approach 

does not seem to have been done before. Several example cascades are presented to 

illustrate the method. 

3.1.1 Cascade Mapping and Blade Coordinates 

Although in the present theoretical development only one mapping is used to 

take the circle into an infinite cascade of airfoils, it is helpful to first explain this 

process in terms of its relationship to the Joukowski airfoil problem. A generating 

circle in the (-plane may be mapped to a J oukowski airfoil in the z' -plane by the 

mappmg 

I I' C1 
z = ., + co+ ( (3.2) 

where the circle passes through the point ( = (Tin which case c1 is found to be (f 
in order to map the point ( = (T to a cusp. The constant co, although arbit rary 

in the J oukowski airfoil problem, has a special effect through the application of a 

second mapping. As mentioned, Lighthill (1945b) uses the mapping 

(3.3) 
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to map an infinite cascade of airfoils in the z-plane onto a single airfoil in the z' -

plane. By applying this mapping in the inverse sense, the single J oukowski airfoil in 

the z' -plane can be mapped into an infinite cascade of airfoils in the z-plane. Points 

infinitely far downstream (z = x+i y -t oo) of the cascade in the z-plane are mapped 

to infinity in the z ' -plane, and points infinitely far upstream ( z = x + i y -t -<Xl) 

of the cascade are mapped to the origin. Infinitely far upstream and downstream, 

the y-coordinate is arbitrary since the mapping is periodic in y. As a result, the 

geometry of the cascade (mainly stagger and solidity) is largely dictated by the 

placement of the J oukowski airfoil with respect to the origin as determined by the 

constant c0 in equation (3.2) 

The Joukowski mapping and the Lighthill mapping may be combined into a 

single mapping. Substituting equation (3.2) into (3.3) gives 

(3.4) 

As with the Joukowski airfoil problem, the generating circle is in this case centered 

on or to the left of the 77-axis and is required to pass through the point ( = (T as 

indicated in figure 3-4, which shows the mapping from the circle to the cascade. 

Two conditions on the mapping are used to determine the coefficients co and c1 • 

First, in order to make the infinite cascade an infinite cascade of airfoils, the point 

( = (T must be a critical point of the mapping. Equation (3.4) gives 

dz 
d( CJ 

(+Co+ ( 

Therefore, the condition that ( = (T be a critical point is satisfied only when 

(3.5) 

(3.6) 
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Figure 3-4 Mapping from the offset circle to the infinite cascade. 
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By inspection, then, t he point ( = (T is mapped to a cusp as anticipated. A second 

condition is that points infinitely far upstream of the cascade must map to the point 

( = a outside of the circle, that is, 

or 

lim ez = lim [c + co + c: ] 
z- - oo c-a .,, 

. C1 
0 =a+ co+ -

a 

which together with equation (3.6) gives 

(} 
c0 = -a- -

a 

(3.7) 

(3.8) 

(3.9) 

With equations (3.6) and (3.9), the mapping (3.4) and its derivative (3.5) are given 

by 

and 

ez = ( - a - (} + Ci = ( ( - a) (1 - (}) 
a ( a( 

dz 
d( 

(1 - ~)(1+~) 

(( - a)(1 - :~) 
a( ( - ( T) ( ( + ( T) 

-
((( - a)(a( - (}) 

(3.10) 

(3.11) 

To summarize, the single mapping (3.10) does in one step what would otherwise 

take two steps. It remains to determine the cascade geometry and ultimately the 

cascade velocity distribution. 

In order to express the equations in the simplest form, two coordinate systems 

are used in the circle plane as shown in figure 3-5. The ('-coordinate system is 

centered on the generating circle which is offset from the (-origin by the constant 

µ such that points (' and ( are related by 

( = ~+i1] = (1+µ (3.12) 
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Figure 3-5 Generating circle indicating coordinate systems and circle 
orientation. 
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On the boundary of the circle 

(3.13) 

where the subscript 'c' is used to denote coordinates defining the circle. The map-

ping is defined once the point ( = a is specified to determine co = ao + i bo according 

to equation (3.9). With the generating circle and the mapping known, the cascade 

blade coordinates Z c = Xe + i Ye are defined by 

which gives 

and 

exc+iyc = ec + iTJe + ao + i bo + (f_ 
ec + '/, T/c 

b (} T/c 
T/c + 0 - t2 2 

'>c + "le 
tanyc =-------

' (}ee 
<. c + ao + t2 2 

'oe + "le 

, (}ee 
<.c + ao + t2 2 

'>c + "le 
exc =-------

COS Ye 

(3.14) 

(3.l5a) 

(3.l5b) 

Equation (3.15a) is used to find Ye which is then used in equation (3.15b) to give 

X e . As seen through the mapping (3.4) or (3.15a) the blade spacing is set at 27ri. 

3.1.2 Complex Potential Function 

In order to determine the cascade velocit_y distribution, it is first necessary to 

find the complex potential F( () in the circle plane. To this end, the complex velocity 

in the circle plane is expressed as 

dF 

d( 

dFdz 
--
dz d( 

(3.16) 
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As indicated in figure 3-4 by the inlet flow and outlet flow, the complex velocity far 

upstream of the cascade is known to be 

while downstream 

li dF . 
m - =U 1 -iq1 z--= dz 

. dF . 
lim - = U 0 - i q0 z-= dz 

(3.17a) 

(3.17b) 

The corresponding complex velocity at these points in the circle plane is expressed 

as 

and 

. dF . dF . dz 
lim - = lim - · lim -
(-a d( z--oo dz (-a d( 

li dF 
m-

e-= d( 
lim dF . lim dz 
z-oo dz (-oo d( 

(3.18a) 

(3.18b) 

In the limit, these equations give with equations ( 3 .11) and ( 3 .1 7 a, b) 

(3.19a) 

and 

(3.19b) 

Thus, there exists outside the circle two spirals-one at ( a and another at 

( ---+ 00. 

In a partly heuristic manner, the complex potential characterized by the two 

singularities indicated in equations (3.l9a,b) is obtained by considering the flow 

depicted in figure 3-6. The spiral at ( = a, which in reference to the ('-plane is at 

(' = b as shown in figure 3-7, must have its reflection inside the circle. Likewise, 

the spiral at ( ---+ oo must have its reflection inside the circle, in particular at (' = 0. 

Since the spiral at ( = a corresponds to the inlet flow, it acts as a vortex-source, 
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Figure 3-6 F low in the circle plane due to the spirals at (' = b and (' --+ oo 
exterior to the circle with reflection interior to the circle. 

© 

~T 

Figure 3-7 Circle offset, spiral locations and trailing-edge in:iage as referenced 
in the (- and ('-coordinate systems. 
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and its reflection must be a vortex of opposite sign and a source of equal strength. 

This source interior to the circle must flow to the origin under the action of a sink 

of equal strength so as to maintain continuity of flow within the circle. 

As shown in figure 3-8, a circle centered on the ('-plane origin is to be added to 

the flow produced by a vortex-source at the point (' = b so as to represent the image 

of the cascade inlet flow . For the vortex-source by itself, the complex potential is 

expressed as 

F(() = Qln((' - b) -iI' 1 ln((' - b) (3 .20) 

Using the Milne-Thomson circle theorem (Milne-Thomson 1958), the complex po­

tential with the circle added is found to be 

F(() = Q[ln((' - b) + ln(cc - b(') - ln ('] 

- if I [ln( (' - b) + ln( CC - b(') - ln ('] (3 .21) 

As a result of adding the circle to the flow, the reflection of the source at (' = b is 

found at(' = cc/b within the circle. This source inside the circle flows to the sink at 

the origin which is the reflection of the sink at infinity. Similarly, a vortex of strength 

f 1 at('= cc/bis the reflection of the vortex of strength -I' 1 at('= b. Likewise, 

a Vortex of strength f I at the Origin is the reflection Of a Vortex of Strength - f I 

at infinity. By equation (3.19b), however, the vortex strength at infinity is related 

to q0 while the vortex strength at (' = b is related to q1 • To allow for this type 

of dependence in the complex potential, the vortex at the origin is subtracted from 

the complex potential (3.21) and a vortex of strength -f 0 is added to the origin. 

Under this operation, the streamfunction on the circle remains a constant, so the 

circle remains a streamline of the flow as is required. In this case, the complex 

potential becomes 

F( (') = Q[ln( (' - b) + ln( cc - b(') - ln ('] 
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Figure 3-8 Outline of the circle which is to be made a streamline of the fl.ow 
due to a spiral at (' = b. 
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- i r 1 [In ( (' - b) + ln (cc - b(')) 

- i r 0 [ln (') (3.22) 

3.1.3 Kutta Condition 

The point on the circle ( = (T which maps to the trailing edge is made a 

stagnation point of the flow by the condit ion that 

- -0 dF I 
d( (=(T -

(3.23) 

or using the chain rule 

dF d(' I = 0 
d(1 d( (' =c 

(3.24) 

where c = (T - µ according to equation (3.12) and as seen in figure 3-7. Since 

d(1/ d( = 1, the Kutta condition becomes 

dFI =0 
d(' ('=c 

Through equation (3.22), it is found that 

dF Q [bee - b('2 ) - i r / [ (' (cc - bb)] - i r 0 [ ( (' - b) (cc - b( 1 ) ] 

d(1 
(

1
((

1 - b)(cc - b(1
) 

Applying the Kutta condition (3.25) requires 

if
1 

= Q(bc - bc) - iI'0 (c - b)(c - b) 
cc - bb 

Substituting equation (3.27) back into (3.26) gives 

(3.25) 

(3.26) 

(3.27) 

dF Q[c(bcc - b('2 ) - ('(bee - bc2 ) ] - i r 0 [c((' - b)( cc - b(') - ('( c - b)( cc - be)) 
d(' = c('( (' - b )(cc - b(') 

(3.28) 



or in its most convenient form 

dF = -(l _ ~) b( Q + i r 0 )c + b( Q - i r 0 )(' 

d(' (' ( (' - b )(cc - b(') 

3.1.4 Inlet and Outlet Conditions 

The outlet flow condition yields 

lim dF = lim dF/ d( 
z-+oo dz ( -+oo dz j d( 

lim dF/d(' 
('-+oo 

lim dz / d( 
(-+CX) 
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(3.29) 

(3.30) 

where d(' / d( = 1 has been used. After substituting in equations (3.11 ), (3.19b ), 

and (3~29) and realizing that (' - b = ( - a, equation (3.30) gives in the limit 

U 0 - i q0 = Q - i r 0 

which yields 

and 

In a similar procedure, the inlet flow condition gives 

dF lim dF / d(' 
lim - = _('_-._b __ _ 

z -+-oo dz lim dzjd( 
(-+a 

Taking the limit yields 

or 

. - u 0 (bc - be)+ iq0 (c - b)(c - b) 
U I - '/,qi = U o + --'---------'-----­

CC - bb 

(3.31) 

(3.32a, b) 

(3.33) 

(3.34) 

(3.35) 

By comparison with the Kutta condition (3.27) and equation (3.32a,b ), it is found 

by inspection that 

and (3.36) 
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In view of this result, the complex velocity becomes taking u 1 = u 0 = u 

dF = -(l _ -=-) b( u + i q0 )c + b( u - i q0 )(' 

d(' (' ((' - b)(cc - b(') 
(3.37) 

Not only is equation (3.35) important in the determination of the vortex strength 

r 1 , it also relates the fl.ow variables u, q1 , and q0 • If u is known, q0 can be 

determined from q1 , and visa versa. This relationship can be clearly expressed by 

letting 

and 

and tan/30 = qo 
u 

Using these relations and observing that 

be - be = 2iBC sin/ 

(c - b)(c - b) = C 2 
- 2BC cos 1 + B 2 

- - 2 2 cc - bb = C - B 

equation (3.35) becomes 

2BC sin/ - ( C 2 
- B 2

) tan /31 - (C 2 
- 2BC cos / + B 2

) tan/30 = 0 

(3.38a, b) 

(3.38c) 

(3.38d, e) 

(3.39a) 

(3.39b) 

(3.39c) 

(3.40) 

As a result, depending on the circle and spiral location, if the inlet fl.ow angle /31 is 

known, (30 is uniquely related, and visa versa. In the special case for which there is 

no turning through the cascade (the zero-lift case), /31 = /30 = /3ZL which through 

equation (3.40) is found from 

B sin/ 
tan/3zL = C B - cos/ 

(3.41) 
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3.1.5 Cascade Velocity Distribution 

Finally, with the complex potential function defined in terms of the cascade flow 

variables, the complex velocity in the cascade plane is obtained from 

dF dF/ d( 
dz dz / d( 

(dF/ d(')(d(' / d() 
dz/ d( 

dF/ d(' 
dz / d( 

(3.42) 

together with equations (3.11) and (3.37). In particular, the magnitude of the 

velocity distribution about the cascade is given by 

I 
dF I l dF/d('k' =(~ 
dz z=zc = ldz / d( k =<c 

(3.43) 

except at the trailing edge for which the above equation is indeterminate by the 

factor 0/0. As will be shown, the trailing-edge velocity can be obtained by applying 

L'Hopital's Rule. 

On the circle where (' = (~ = Cei<P, the complex velocity from equation (3.37) 

IS 

dF I ( c ) b( u + i q0 )c + b( u - i q0 )(' I 
d(' ('=(~ = -

1 
- (' ( (' - b )(cc - b(') ('=(~ (3.44) 

As may be shown 

( 1 - c,) I = 2ieiwf2 e- i<f> /2 sin(</>/2 - w/ 2) 
( ('=(~ 

(3.45a) 

b(u + i q0 )c + b(u - i q0 )('k'=(~ = 

(3.4.:Jb) 

((' - b)(cc - b(') k'=<~ = Cei<P(C2 
- 2BC cos('l/J - </>) + B 2

) (3.45c) 

which when substituted into (3.44) gives 

dFJ 
d(' (' =(~ 

4BV0 (/30 )sin(</>/ 2 - w/ 2)cos('l/J + f30 - w/ 2 - </> / 2) ei<P 
C 2 - 2BC cos('l/J - </>) + B 2 i 

(3.46) 
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In exponential form, this becomes 

dF I = 4BV0 (,B0 )sin(¢/ 2-w/ 2) lcos('l/J+,B0 -w/ 2-¢/ 2)1 ei(¢- rr/ 2 - rr•(o)) 

d(' (' =(~ C 2 
- 2BC cos( 'l/J - <P) + B 2 

(3.47) 

where 

7r*(<P) = { 0, w ~ <P ~ 2(1/J + ,80 ) - 7r -w 
7r' 2( 1/J + ,B 0) - 7r - w ~ <P ~ 27r + w 

(3.48) 

The mapping derivative dz/ d( on the circle ( = (c is found numerically to give 

ldz/d(k=(c· With this and ldF/d(' k'=(~ from equation (3.47), the velocity distri­

bution (excluding the trailing-edge point) is obtained by equation (3.43). 

At the trailing-edge of the cascade blade, ZT, the velocity is found by 

_ b( u + i q0 )c + b( u - i q0 )(' I 
dF ((' - b)(cc - b(') ('=c 

lim - = ------- ------
z-+zT dz 

lim (1- ~) 
(' -+c (' 

(3.49) 
a((+ (r) I 

(( - a)(a( - (j,) ( = (r 
lim (1 - (T) 

(-+(r ( 

From L 'Hopital's rule 

(T -------
li ( 

c) m 1- -
('-+c (' 

lim (1 - (T) 
(-(r ( 

c 
(3.50) 

Using this result, equations (3.45a,b) and 

l(T- al2 = (}- 2A(rcosa + A 2 (3.51) 

where a = Aei ex eventually gives 

I 

dF 1 · = vrl = (rBV0 (,80 )((} - 2A(r cos a+ A2 )I cos('l/J + ,80 - w )I 
dz z=zy 

130 AC(C2 - 2BC cos('l/J - w) + B 2
) 

(3.52) 

An important result is found from equation (3.43) applied at two different outlet 

angles ,B 
0 1 

and ,B 0 2 . Since dz/ d( does not depend on the fl.ow conditions, it is 



obtained that 

v( </> )lso2 

v( </> )l .eo l 

ldF/ dz la 02 
ldF/ dz le

0 1 

v02(,B02)I cos(1/J + (302 -w/2 - <P/ 2)1 
V01 ((30 1 )I cos('lj; + ,801 - w/ 2 - ¢/ 2)1 
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(3.53) 

Thus, if the velocity is known for one outlet angle .Bob, it is known for any other 

outlet angle ,8
0 2

. It can be shown that the trailing-edge velocity behaves in the 

same way, that is, 

vo2(.Bo2 )I cos(1/J + .802 - w/2)1 
vo1 (.801 )I cos(1/J + .801 - w/ 2)1 

3.1.6 Application of the Exact Solution for Cascade Flows 

(3.54) 

Choosing a circle offset of µ = - 0.02 with (T = 1 and a spiral location of 

a = 1.15ei 1750 results in the cascade geometry (x = -11.4°, u = 0.829) shown in 

figure 3-9. The corresponding velocity distributions for ,81 = 20°, 30°, and 40° 

are shown in figure 3-10, and the velocity distribution for ,BZL = 2.67° is shown in 

figure 3-11 . 

As previously mentioned, the main effect of changing the distance between the 

spiral and the circle is to change the solidity, although there is as well some change in 

stagger and cascade blade thickness and camber. Using the offsetµ = -0.07 + i 0.1 

and a = 1.5 ei 1750 and a = 3 ei 1750 results in the two cascades shown in figure 

3-12. Changing the argument of a mainly effects the stagger as shown in figure 

3-13 for a = 1.5ei 1750 and a = 1.5ei 1600 with µ = -0.05 + i 0.1. Finally, as with 

the Joukowski airfoil, moving the generating circle up increases blade camber and 

moving it to the left increases the thickness. 

VVith regard to the spiral being close to the generating circle, the points near 

the blade leading edge become sparse as compared with points near the trailing 

edge in the case of equiangular points around the circle. To demonstrate this effect, 



Figure 3-9 Example cascade for a circle offset of µ = -0.02 and a spiral 

location of a = 1.15 ei 1 ;
50

• 
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Figure 3-10 Velocity distributions for cascade shown in figure 3-9 

(/31 = 20°, 30° and 40°). 

135 



v 

0 0.5 
XIC 

1.0 

Figure 3-11 Zero-lift velocity distributions for cascade shown in figure 3-9 

((31 = {3ZL = 2.67°). 
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(a) 

.3.0 JM© 
3.0 

( b) 

Figure 3-12 Example cascades for a circle offset ofµ= -0.07 + i 0.1 and 
spiral locations of (a) a = 1.5 ei i ;;; • and ( b) a = 3ei 1750

. 
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(a) 

3.0 

(b) 

Figure 3-13 Example cascades for a circle offset ofµ = -0.05 + i 0.1 and 
spiral locations of (a) a= l.5ei 1750 and (b) a= 3ei 16 ll 0 . 

138 

0 



139 

the values a = 1.1e; 1 8u0 and µ = -0.025 with 500 equiangular points around 

the circle have been selected to produce the symmetric cascade shown in figure 

3-14. Symbols are used to indicate the points as mapped from the circle. In 

the generation of exact solutions , this stretching is not a limitation since better 

resolution around the leading-edge may be obtained by carefully selecting points on 

the circle to be mapped to the cascade. As shown in figure 3-15 for a = 1.1ei 1500 

and µ = -0.01 - i 0.4, another effect of having the spiral close to the circle is that 

as the argument of a is changed from 180° in an effort to have moderate stagger 

the cascade profiles tend to become S-shaped. Nevertheless, while such profiles are 

not practical, the solutions may be used as test cases for analysis methods as was 

originally intended. 

3.1. 7 Alternative Mappings for Exact Solutions 

Instead of using the mapping (3.4), the mapping may be introduced as 

(3.55) 

In this case, the inlet fl.ow ( z -+ -oo) maps to infinity in the circle plane while the 

outlet fl.ow (z -+ oo) maps to the point ( = a given by 

C1 
0 = a+ co+ -

a 
(3 .56) 

Thus, in the circle plane a vortex-sink exists at the point ( = a while at the point 

( -+ - oo there is a vortex-source, opposite to the exact theory previously presented. 

For this mapping, the steps taken to obtain the cascade geometry and velocity 

distributions follow along the same lines as presented in sections 3.1.1 through 3.1.5 

except that it is most convenient to express the equations finally in terms of the 

inlet fl.ow parameters. More generally, the mapping (3.4) or (3.55) need not be 



0 
c::::·: 

. c~::"O: 
Figure 3-14 Example cascade for a circle offset ofµ= -0.025 and 

a spiral location of a= 1.1 ei isu 0
• 
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3.0 © 

3.0 

Figure 3-15 Example cascade for a circle offset ofµ= - 0.01 - i 0.4 and 
a spiral location of a= 1.1ei150°. 
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truncated to three terms. In general, the mapping may have an infinite number of 

terms as considered in the next section. 

3.2 MULTI-POINT INVERSE DESIGN OF AN 

INFINITE CASCADE OF AIRFOILS 

In this section, a theory for multi-point inverse design of cascades is presented 

and two examples are illustrated. As mentioned, the current approach for cascades 

is similar to the multi-point inverse airfoil design approach of section 2.1. Aside from 

the similarity, the significant difference between the present cascade and the airfoil 

problem is that the cascade mapping is singular at a point exterior to the circle; 

whereas, with the airfoil the mapping is regular at all points exterior to the circle. 

It will be shown, as with the isolated airfoil, that the specified velocity distribution 

about the cascade blade is not entirely arbitrary. Two integral constraints arise in 

order to ensure closure of the cascade blades. These two integral constraints are 

analogous to the two integral constraints ensuring closure of the isolated airfoil. For 

the isolated airfoil, one additional integral constraint ensures compatibility with the 

freestream fl.ow . For the cascade, however, two more constraints arise to guarantee 

compatibility with both the inlet and outlet fl.ow . One of these constraints appears 

in the form of an integral constraint and the other as an algebraic relation. For 

multi-point design , continuity conditions on the velocity distribution are imposed 

so that at any single inlet or outlet angle the velocity distribution is continuous. 

Finally, in what follows where there is a close similarity to the multi-point inverse 

airfoil design formulation as given in section 2.1 , the discussion will be brief since 

details have already been presented there. 
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3.2.1 General Cascade Mapping Function 

The solution proceeds from a generalization of the mapping (3.4), viz . 

z (27ri/s) ( C1 C2 
e = + cu + - + - + · · · ( (2 

(3.57) 

which takes the unit circle centered on the origin in the ( -plane into the infinite 

cascade in the z-plane as shown in figure 3-16. In this case, the spacing between 

the cascade is given by the complex parameter s. As may be seen by equation 

(3.57), the outlet fl.ow (z -+ oo) maps to infinity, and the inlet fl.ow (z-+ -oo) maps 

to ( = a according to 

li z li [ /" C1 C2 ] m e = m ., + co + - + - + · · · 
Z-+-00 (-+a ( (2 

(3.58) 

or 

C1 C2 
0 = a + co + - + - + · · · 

a a2 (3.59) 

Since the velocity is to be specified, it is most convenient to work not with the map-

ping (3.57) but with its derivative. From equation (3.57), the mapping derivative 

is found to be 
C1 2c2 

1-(2-0-··· 

C1 C2 
( + Co + ( + ( 2 + · · · 

dz 
(3.60) 

d( 

Through equation (3.60) , it is observed that dz / d( is singular outside of the circle 

at the point ( = a. Expanding about this point reveals 

dz = (-1 ) (l _ co + a + .. ·) 
d( ( - a ( 

(3.61) 

in which case the singularity at ( = a is a first-order pole- a fact which could have 

been anticipated from the mapping derivative (3.11 ). 
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Figure 3-16 i\Iapping from the unit circle to the cascade plane. 
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To aid in the inverse formulation, the derivative of the mapping is best expressed 

as 

dz = (-1 ) (1 _ ~) l - € ef (O 
d( ( - a ( 

(3 .62) 

where the factor ef(() is a regular non-zero function for I( I > 1 and has no zeros, 

poles or discontinuit ies on 1(1 = 1. The factor (1 - 1/ ()1 
€ is introduced to map 

the point ( = 1 to the cascade-blade trailing edge with an angle ?TE. Finally, the 

required first-order pole is included as the firs t factor. The function f( ( = rei <I> ) is 

expressed as 

00 

f(() = P(r,</>) + i Q(r,</>) = L r - m(am + ibm)e- m<P (3.63) 
m =O 

where P(r, </>) and Q(r,</>) are real functions, and the series converges for 1(1:2'.:1. 

On the unit circle, ( = e i cP , f ( () becomes 

00 00 

P( </> )+i Q( </>) = L (am cos m</>+ bm sin m</> )+i L (bm cos m</> - am sin m</>) (3.64) 
m,=O m = O 

3 .2 .2 Closure Condition, Cascade Blade Spacing 

and Blade Coordinates 

As with the isolated airfoil, one objective is to find conditions on the mapping 

which ensure closure of the cascade blades. To start with , it is best to consider as 

depicted in figure 3-17 a closed contour Co about the unit circle which is mapped 

into a closed contour Bo about each cascade blade. For any given blade, then, it 

must be true that 

J dz= 0 
f Bo 

For any arbitrary contour C mapped to B , the following relation holds: 

(3.65) 

(3.66) 



B~ 

B~ 

Figure 3-17 Contour about the circle as mapped to the infinite cascade. 
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Therefore, it follows that 

(3.67) 

Consider now the contour C1 +C2+C3 + C-:i mapped to B1 +B2+B3+B4 as shown 

in figure 3-18. The stagnation streamlines of the flow are presented to provide a 

physical interpretation of the contours. Also, the paths which run parallel to these 

stagnation streamlines off the circle and off the cascade cancel upon integration and 

hence need not be considered further. Since there are no singularities within the 

contour, the Cauchy-Goursat theorem gives 

(3.68) 

Using 

(3.69) 

gives 

r dz d r dz -
j C1 d( ( + j C3 d( d( - 0 (3.70) 

In the limit that C3 shrinks to the point ( = a and C4 expands out to C5 as shown 
' 

in figure 3-18, the integral about Cs which encloses the singularity at ( = a becomes 

by the residue theorem 

fc
5 
~~d( = 27riRes(a) = JBs dz= s (3.71) 

The last quantity f B- dz is simply the cascade spacing s used in equation (3.57). 
;) 

Taking the spacing to be 

(3.72) 

reqwres 

Res(a) = 1 (3. 73) 
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Figure 3-18 Con tours in the circle plane as mapped to the cascade plane. 
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Using t his result and substituting equation (3.62) into (3.71) yields 

( 1 - ~) 1 - f ef(() 

_l 1 ( d( = 1 
27l'i fc5 ( - a 

(3. 74) 

The integral (3 .74) is evaluated by means of the Cauchy integral formula: 

~ J g(() d( = g(a) 
2m, fc ( - a 

where g( () is regular and the contour C encloses the singularity at ( 

comparison with the integral (3 .74), it is required that 

( ) 
1-f 

1 - ~ ef(a) = 1 

(3 .75) 

a . By 

(3.76) 

Separating this result into the real and imaginary parts and taking a = Aei u yields 

the conditions 

P(A,a)= (1-i:)ln( A ) 
.J1 - 2A cos a + A 2 

Q(A, a) = -(1 - i:) arg(A - e-i u) 

(3.77a) 

(3 .77b) 

To summarize, when these conditions are satisfied, the cascade blades will be closed, 

and the spacing by equation (3.72) will bes= 27l'i. Although the cascade spacing is 

fixed , the cascade chord (and hence the solidity) is effected by changing the location 

of the singularity at ( = a as done in the exact solution of section 3.1. Examples 

will be illustrated later . 

Coordinates are obtained by integrating the mapping about the unit circle as 

zlz=zc = J ~~ d(I _ 
(-(c 

(3.78) 



150 

Taking 

z = z, = x(<P) + iy(</J) (3.79a) 

( = (c = ei </> d( = i ei 4> d</J (3.79b,c) 

dz I = ( . 1 ) (1 - ei <l>)l-£eP(ef>)+i Q(cf>) 

d( (=(c ei <f> - a 
(3. 79d) 

_ (2 sin <P / 2 )1
- £ ep ( <P) e i((l-£ )( 11'/2-ef>/2)-arg( e i ¢> - a)+Q( ¢> )J 

JI - 2Acos(a - <P) + A2 

smce 

gives 

1 - e-i <f> = 2(sin </J/2) ei(rr/2-<1>/2) 

x ( <P) + i y( <P) = 

(3.79e) 

(3.80a) 

(3.80b) 

-! (2 sin <P/2)1
-£eP( <P) ei(¢>/2- £(rr/2-<f>/2)-arg(ei<f> __ 4.ei 0 )+Q(<f>)] d</J 

JI - 2Acos(a - <P) + A2 
(3.81) 

3.2.3 Complex Potential Function 

As done in section 3.1.2, it may be shown that two spirals exist outside the circle. 

The inlet fl.ow denoted by the fl.ow quantities ( )* corresponds to a vortex-source 

at ( = a, and the outlet flow denoted by the quantities ( )* (not to be confused 

with taking the conjugate) corresponds to a vortex-sink at ( -> oo. As a result for 

the unit circle, the complex potential becomes [from equation (3.22) with µ = 0, 

b = a, c = 1, and ( = ( ] 

F(() = Q [ln(( - a)+ ln(l - a() - ln (] 
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- i r ' ( <P) [ln ( ( - a) + ln ( 1 - a() l 

- i r * ( <P) [ln ( l (3.82) 

At the present point in the development , the inlet and outlet circulation strengths 

f *(¢) and r*(<P) may be thought of as constants . As will be seen later, however , 

considering the circulation strengths to be functions of¢ is analogous to considering 

the airfoil angle of attack in the multi-point inverse airfoil design problem to be a 

function of¢, that is, a*(¢). By imposing the Kutta condition which requires ( = 1 

to be a stagnation point, it is found [from equation (3.27)] that 

iI'*(<P) = Q(a - a) - ir* (<P)~l - a)(l - a) 
1- aa 

(3 .83) 

to yield [from equation (3.29)] 

dF = -(l _ ~) a(Q +if*(¢))+ a(Q - if*(¢))( 
d( ( (( - a)(l - a() 

(3.84) 

3.2.4 Inlet and Outlet Conditions 

As indicated in figure 3-16, the outlet fl.ow is given by 

1. dF ._*(,+,) li dF/ d( (3.85 ) im - = u - i q 'f' = m 
z --+ cx.i dz (--+cx.i dz / d( 

= lim 

- (1 - ~) a( Q + i r * ( <P)) + a( Q - i r * ( <P) )( 
( (( - a)(l -a() 

(-= C ~a) (1 - Zt'-!((1 

(3.86) 

In the limit 

. - * ( ,/.,) Q - i r * ( <P) 
u-iq 'f' = ----

lim ef(() 
(3.87) 

(--+ CXl 
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By requiring that 

lim ef(() = 1 
( -- = 

(3 .88) 

it is found that 

Q=u and r *(<P) = 7f*(4>) (3.89a, b) 

in which case equation (3 .84) becomes 

dF = -(l _ ~) a(u + iq*(<P)) + a(u - iq*(<i>))( 
d( ( ( ( - a) ( 1 - a() 

(3 .90) 

An additional condition on the mapping is provided by the condition (3.88) which, 

when separated into the real and imaginary parts , gives 

lim P ( r , 4>) = 0 and lim Q(r,4>) = 0 (3 .91a , b) 
r->oo r-+oo 

Proceeding in a similar manner for the inlet flow gives 

. dF . * . dF I d( 
lim -d = u - i q (4>) = lim d / d( (3.92a) 

z-+-oo z (->a Z 

-(l _ ~) a(u + iq*(<i>)) + a(u - iq*(<P))a 
a (1 - aa) 

( )
1-E 

1 - l ef(a) 

(3.93) 

and becomes through condition (3.76) 

= -(l _ ~) a(u + iq*(<P)) + a(u - iq*(<i>))a 
a (1 - aa) 

(3.94) 

Thus, 

. *() -u(a-a)+iq*(<i>)(l-a)(l-a) 
-iq 4> = -

1- aa 
(3.95) 



which by comparison with the Kutta condition (3.83) gives 

I' ' (<P) = q*(<P) 

Expressing equation (3.95) as 

u(a - a) - i q*(<P)(l - aa) - iq* (<P)(l - a)(l - a)= 0 

and using the relations 

tan{3*(¢) = q*(<P) 
u 

and 

a - a = 2i A sin a 

1 - aa = 1 - A 2 

(l-a)(l -a)= l-2Acosa+A2 

yields 

2Asina - (1 -A2 )tan{3*(¢) - (1 - 2Acosa + A2 )tan;B*(¢) = 0 
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(3.96) 

(3.97) 

(3.98a) 

(3.98b) 

(3.98c) 

(3.98d) 

(3.99) 

Consequently, once the spiral location ( = a is selected, the inlet angle {3* ( <P) may 

be determined from the outlet angle {J* ( <P) and visa versa. The flow angle f3 z L for 

which there is no turning becomes 

A sin a 
tanf3ZL = A 

1 - cos a 
(3.100) 

3.2.5 Integral Constraints 

The conditions on the mapping [in particular f( ()] at point's ( = a and ( -t oo as 

expressed by equations (3.77a,b) and (3.9la,b) may be related to integrals involving 

the value of the mapping [in particular P( <P) and Q( <P )] about the unit circle . By the 
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Gauss mean value theorem applied exterior to the unit circle, the outlet conditions 

(3.9la,b) give 

1 12rr 
lim P ( r, </>) = - P ( </>) d</> = 0 

T->(X) 271" 0 
(3.lOla) 

1 12rr 
lim Q ( r, </>) = - Q ( </>) d</> = 0 

T->(X) 271" 0 
(3.lOlb) 

Using the Poisson integral formulas exterior to the unit circle gives for the closure 

conditions (3.77a,b) 

1 {2rr 1 - Az 
-P(A,a) = 271" lo P(</>)l - 2Acos(a - </>) + A2 d<f> 

= -(1- t:)ln( A ) (3.102a) 
,h-2Acosa+A2 

-Q(A,a) = ~ [2rr P(</>) A sin( a - </>) d<f> 
7r lo 1 - 2Acos(a - </>) + A2 

= (1 - t:) arg(A - e-io:) (3.102b) 

or alternatively 

-P(A,a) = -~ [2rr Q(</>) A sin( a - </>) d</> 
7r lo 1 - 2Acos(a - </>) + A2 

= -(1- t:)ln( A ) (3.103a) 
J l - 2A cos a + A 2 

1 f2rr 1 - Az 
-Q(A,a) = 27rlo Q(</>)1-2Acos(a-</>)+A2 d<f> 

= (1 - t:) arg(A - e-io:) (3 .103b) 

Lastly, by the Poisson integral, P( </>) and Q( </>) are related as 

1 12rr 1/J - </> 1 12rr 1/J - </> P( </>) + iQ( </>) = - - Q( 1/J) cot -- d'l/J + i - P( 1/J) cot -- d'l/J 
271" 0 2 271" 0 2 

(3.104) 

The three integral constraints (3.lOla) and (3 .102a,b) involving P(</>) and the 

three integral constraints (3.lOlb) and (3.103a,b) involving Q(</>) are analogous in 
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m any ways to those integral constraints found for the isolated airfoil [equations 

(2.50a-c) and (2.51 a-c) respectively]. The essential difference (besides the fact 

that the equations themselves are obviously different) is that for the cascade there 

are in a sense two freestream flows-the inlet and outlet flows. The outlet flow gives 

rise to the integral constraints (3.lOla,b) much like in the isolated airfoils problem 

the freestream gives rise to the integral constraints (2.50a) and (2.51a) . For the 

cascade an additional constraint arises. This constraint is due to the inlet flow 

condition which leads to an algebraic condition (3.99) relating the inlet and outlet 

angles . In order for these integral constraints to be useful for inverse design , it is 

necessary to relate to mapping [defined by P(</>) and Q(</>)] to the complex velocity. 

3.2.6 Relation between the Mapping and the Complex Velocity 

Up to now, there has been no connection to the inverse design problem as clas­

sically posed through the specification of the velocity distribution. The necessary 

mapping conditions which ensure closure and compatibility with the inlet and outlet 

flow have been presented. These special conditions may be satisfied by any number 

of suitably selected mapping functions from which the cascade can be derived and 

the velocity distribution determined. Of course, the objective here is not to specify 

the mapping function per se, but rather to specify the velocity distribution and 

from that derive the mapping which then gives the cascade. With this in mind, the 

functions P( cf>) and Q( cf>) appearing in the integral constraints must be related to 

the complex velocity so that the velocity distribution may be explicitly involved in 

the integral constraints. After having satisfied the integral constraints by a suitably 

specified velocity distribution, the mapping may be defined by P( cf>) and Q( cf>) in 

terms of this velocity distribution. From this mapping, then, the coordinates are 

finally obtained. 
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In a manner similar to that presented in section 2.1.2, the complex velocity on 

the cascade z = Z c is given by 

dF / d( k=<c 
dz/d(lc,=(c 

(3.105) 

where ( = (c = ei ¢ on the unit circle. In exponential form, the complex velocity on 

the cascade is expressed as 

dFI = v*(<P)e- i8"(¢) 
dz z=zc 

(3.106) 

while on the circle the complex velocity becomes 

dF I 2A v*(<P) (2sin</J/2) I cos(a + /J*(<P) - <P/2)1 e- i(¢- rr/2 - rr"(</>)) 
d( (=(c - 1 - 2Acos(a - <P) + A2 (3.io

7
) 

where 

7r*(<P) = { 0, 0 ~ <P ~*2(a + /J*(<P)) - 7r 
7r, 2( a + ,B ( </>)) - 7r ~ </> ~ 2r. 

(3.108) 

Using equations (3.105) and (3.106) together with the mapping derivative (3.79b), 

equation (3.105) yields after taking the natural logarithm and separating into the 

real and imaginary parts 

P( </>) = - ln{ (2 sin </J/*2) - e .Jl - 2A c~s a+ A 2 v*( <P)} (3.109a) 
2A V (</>)I cos( a + ,B (</>) - </>/2)1 

Q( <P) = O*(</>) + 7r*( <P) - </>/2 + E( 7r /2 - </>/2) + arg(ei ¢ - Aei a) (3.l09b) 

which relates the velocity distribution v* ( <P) and the outlet angle distribution 7J*( </>) 

to P(</>) and the cascade-blade flow-angle direction O*(<P) to Q(</>). Thus, the map­

ping is defined through P( </>) in terms of the velocity distribution as intended. 

3.2. 7 Multi-Point Design Capability of the Theory 

The discussion given in section 2.1.5 applies equally well to the cascade. The 

function P( </>) defined by equation (3.109a) is specified in terms of v* ( </>) and {J* ( </>) 
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(and ir* ( </>) which is related to 73" ( </>)) . For multi-point design, the cascade blade is 

divided into the desired number of segments over each of which the design velocity 

distribution v"'( </>) is prescribed together with the desired outlet angle {J* ( </>) (con­

sidered const~nt over any given segment). For this desired outlet angle {J* ( </>), the 

prescribed design velocity distribution will be achieved. Alternatively, for a given 

segment, the desired inlet angle /3* ( </>) may be given from which the corresponding 

{j* ( </>) is obtained by equation (3.99). 

3.2.8 Continuity Constraints 

The requirement that ef( C:) be continuous on the boundary of the circle requires 

that P( </>) be continuous. In this case at the junction between any two segments 

(3.110) 

Thus, for each junction on the cascade blade, a continuity condition arises which 

ultimately ensures that for any given inlet or outlet angle the velocity distribution 

about the cascade blade is continuous. 

3.2.9 Limiting Behavior of the Velocity Distribution in the Vicinity 

of the Stagnation Points 

By equation (3.109a), the design velocity distribution is expressed as 

v* ( </>) = 2A V* ( </> )( 2 sin</> / 2)• I cos( a: + :zr ( </>) - <P / 2) I e-P( rf>) 

.JI - 2A cos a: + A 2 
(3.111) 

As may be seen, stagnation points occur first at <P = 0 and <P = 271" which correspond 

to the trailing edge and second at </> = / = 2( a: + {j* ( </>)) - 7r. Consequently, the 

design velocity distribution at the trailing edge goes to zero as 

,lim v*(<P) ,.._, (sin</>/2)• 9+(</>) 
'P+ -.o 

(3.112a) 
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lim v * ( </>) '"'"' (sin </> / 2) e g - ( </>) 
</>- --+2tr 

(3.112b) 

while at the forward stagnation point / the velocity distribution goes to zero as 

lim v*(</>),..., I cos( a + p*(<P) - <P/2)1 h+(</>) 
<P+ --+"'( 

(3.113a) 

lim v*(<P),...., I cos( a+ p*(</>) - </> / 2)1 h_(<jy) 
<P- --+ -y 

(3.113b) 

and where 9+(</l), 9- (</>) , h+(</>), and h_(<f>) are positive, non-zero functions. 

3.2.10 Numerical Implementation 

As an overview, the solution proceeds along lines similar to those presented for 

the isolated airfoil. The differences are that the location of the vortex-source ( = a 

must be specified, and the velocity distribution over any segment of the cascade 

blade must be given together with the corresponding outlet angle. For simplicity, 

the velocity distribution normal to the cascade front , u, is taken as one. If it is 

desired to specify the segment velocity distribution for a desired inlet angle, it 

becomes necessary to solve equation (3.99) to find the corresponding outlet angle 

so as to define P(<P) by v*(<P) and p*(</J). Since there are three integral constraints 

on P( <P ), three free parameters must be introduced. Then, for each segment of the 

cascade blade for which there is a corresponding continuity equation, an additional 

free parameter must be introduced. Having solved for the free parameters, P( </>) 

is defined from which Q( <P) is obtained. Together P( </>) and Q( <P) are then used to 

obtain the cascade blade coordinates. To obtain the cascade velocity distribution 

for any arbitrary outlet angle /30 , the harmonic function P(</>) is used to give from 

equation (3.111) 

v(</>)l s = 2A V0 (/30 ) (2sin </>/ 2)€ I cos( a + /30 - </> / 2) 1 e - P(ef>) 

· 
0 ,/I - 2A cos a + A2 

(3.114) 
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Briefly, the design velocity distribution and outlet angle distribution are defined 

as 

v*(<P) = v1w(<P) 

{J*(<P) = /31 (3.115a) 

v* (<P) = Vi 

{J*(<P) = /3i i = 2, 3, ... , I - 1 (3.115b) 

v* (<P) = v1w(<P) 

(J* ( <P ) = 7J1 </JJ- l ~ </J ~ 271" (3.115c) 

where I is the total number of segments. As may be seen, the velocity distribu­

t ion over each intermediate segment is specified as constant; however , as in section 

2.1. 7 .1 , the velocity dist ribut ion may be defined as a function of <P by the addition 

of the relative velocity distributions vi( Ji). The recovery functions w( <P) and w( <P) 

are as defined in section 2.1.7.1 by equat ions (2.61) and (2.62a- c). 

After forming P(<P) and substituting this into the integral constraints (3.lOla) 

and (3.102a,b) and the continuity equation (3.110) at the t railing edge, it follows 

that 

au µ+ a127J, + a13KH + aHK H = b1 

a21 µ + a227J. + a23KH + a24K H = b2 

a31µ + a32µ + a33KH + a34. K H = b3 

a41 µ + a427J. + a43KH + a44K H = b4 

(3.116a) 

(3.116b) 

(3.116c) 

(3:116d) 

where expressions for the coefficients a j k and bj are given in Appendix D. At all 
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other junctions, the continuity equation gives 

Fd cos( a + {J i - </>i/2)1 
i = 1,2, ... ,I - 1 

(3.117) 

These equations are solved by letting µ, µ, KH, and K H and all the velocity 

levels Vi except one be the unknowns or free parameters. First, equation (3.117) 

is solved in order to determine all the velocity levels Vi· Next, the coefficients 

ajk and bj are determined according to the equations given in Appendix D, and 

the system (3.116a-d) is then solved. These parameters finish defining P( </>) from 

which Q( </>) is found by the method discussed in section 2.1. 7 .3, except in the present 

implementation only the leading-edge corner (which is by far the largest) is split-off 

of P( </>) before forming Q( </>) as the sum of contributions due to the smooth part 

of P( </>) and the part with the sharp leading-edge corner. As may be shown from 

dP(</>)/d</>, the function S(</>) [equations (2.68) and (2.76)] to be split-off of P(</>) 

has the strength k given as 

1 - -
k = 2 [tan( a+ {Ji L - </>i L/2) - tan( a+ {Ji L+I - </>i L/ 2)] (3.118) 

where iL is used to mean the leading-edge segment. 

3.2.11 Example Cascades with Multi-Dimensional Newton Iteration 

Having specified the location of the spiral and the velocity distribution according 

to equations (3.115) along with the velocity normal to the cascade front (u = 1 in 

the examples to follow), the governing equations (3.116a- b) and (3.117) may be 

solved. In all likelihood, the resulting cascade blade will be either bulbous (as, 

for example, in figure 3-19), crossed or unrecognizable. The problem again stems 

from the values determined for KH and K H which control the shape of the velocity 



Figure 3-19 Example cascade derived by the inverse method without Newton 

iteration (KH = 7.652, K H = 8.656). 
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distribution near the trailing edge. Newton iteration may be used to remedy the 

situation as was done for the isolated airfoil (section 2.1.9). 

For the cascade shown in figure 3-19, the single prescribed velocity level and the 

leading-edge arc limit are iterated to achieve KH = 0.25 and K H = 0.25 resulting in 

the cascade shown in figure 3-20. For this cascade made up of seven segments, the 

following values are used to specify the spiral location and the velocity distribution: 

a = 1.5ei1350 

¢1 = 109. 735° 

¢2 = 124.4 73° 

cP3 = 133.090° 

cP4 = 140.304° 

cP6 = 109. 735° 

cP7 = 360° 

K =1 

c/>n- = ¢1 

c/>s = 40° 

E =0 

/31 = 50° 

/32 = 50° 

(33 = 53° 

(34 = 56° 

(35 = 59° 

/36 = 45° 

/31 = 45° 

K=l 

?>n- = cP6 

?>s = 320° 

(3.119) 

From the given inlet angles, the outlet angles (iJ 1 = 33.912°, 732 = 33.912°, 733 = 

35.136°, 734 = 36.500°, 735 = 38.034°, 736 = 32.115°, and 737 = 32.115°) are comput­

ed according to equation (3.99) in order to define P(cf;) in terms of the outlet angle 

distribution. With this and Newton iteration as 

=} 0 = KH - 0.25, =} 0 = KH - 0.25 (3.120) 

the following solution is obtained: 

cP5=157.238°, V1 = 2.517, V2 = 2.517, V3 = 2.736 



Figure 3-20 Example cascade designed by the inverse method with 

Newton iteration (KH = 0.25, K H = 0.25). 
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V4 = 3.056, V5 = 3.533, V5 = 1.121, V7 = 1.121 

The pertinent cascade parameters computed from the solution are 

CT= 0.425, X = -35.259° l f3zL = 27.235° l t/ C = 0.200 
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(3.121) 

(3.122) 

For the cascade shown in figure 3-19, the values </1 5 = 156. 745° and v 1 = 2.543 

were used. By comparison with equations (3.121) the changes necessary to result 

in a the normal cascade of figure 3-20 are only very slight. The resulting velocity 

distributions at the design inlet angles of (31 = 45°, 50°, 53°, 56°, and 59° are shown 

in figure 3-21. As may be seen, the first four segments on the upper surface and the 

first segment on the lower surface each have a constant velocity at the corresponding 

design inlet angle. Standard practice is to normalize the velocity distribution for a 

given inlet angle by the inlet fl.ow speed V0 ((30 ) as shown in figure 3-22. 

For code validation purposes, the cascade shown in figure 3-20 was analyzed 

using the recently added cascade option of the Eppler program (1988, 1990). Figure 

3-23 shows a comparison between an exact solution and the predicted results for a 

cascade generated by the theory of section 3.1 with the chosen values µ = -0.07 + 

i 0.2 and a = 3ei 1750 to give er = 0.223, x = -5.242°, and t/ c = 0.121. The 

comparison is made at the zero-lift angle of f3zL = -1.589° and results in an RMS 

difference of 0.000163. For the cascade shown in figure 3-20, the comparison shown 

in figure 3-24 is made at the zero-lift angle and gives again good agreement with 

an RMS difference of 0.000478. It may be concluded that the Eppler program gives 

correct results and that the inverse code gives the correct cascade geometry for a 

specified velocity distribution. 

As a last example, a cascade with positive stagger and four segment is presented. 

Taking the values 

arg (a) = 280° 
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Figure 3-21 Velocity distributions for /3
1 

= 45°, 50° , 53°, 56° and 59° 
corresponding to the design inlet angles for the cascade shown in 
figure 3-20. (Each velocity distribution normalized by the fl.ow 
speed normal to the cascade front.) 
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Figure 3-22 Velocity distributions for /3 1 = 45° , 50°, 53°, 56° and 59° 
corresponding to the design inlet angles for the cascade shown 
in figure 3-20. (Each velocity distribution normalized 
by the inlet flow speed.) 
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Figure 3-23 Comparison between the exact velocity distribution and the 
velocity distribution predicted by the Eppler program 
for (31 = /3zL = -1.589° for a cascade generated by 
the theory of section 3.1. (Velocity distribution 
normalized by the inlet flow speed.) 
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Figure 3-24 Comparison between the velocity distribution of figure 3-21 and 
the velocity distribution predicted by the Eppler program for 

/31 = /3ZL = -1.589° for the cascade shown in 
figure 3-20. (Velocity distribution normalized by the 

inlet fl.ow speed.) 
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Taking the values 

arg (a) = 280° 

¢>1 = 159.792° 

ef>3 = 290.449° 

ef>4 = 360° 

K =1 

ef>n· = ¢>1 

ef>s = 40° 

ef>F = 10° 

E = 1/ 9 

and iterating as 

/31 = - 30° 

/32 = -30° 

f33 = - 40° 

f34 = - 40° 

K = 1 

ef>n- = ef>3 

~s = 320° 

~F = 330° 
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(3.123) 

lal=A =? 0=CT - l, ¢>2 =? 0 = K H - 1, V1 =? 0 = KH 

(3.124) 

results in 

A = 1.040, ¢>2 = 278.456, V1 = 1. 757 

V2 = 1.757, V3 = 1.419, V4 = 1.419 (3.125) 

In this case, the cascade parameters computed from the solution are 

X = 41.023°, /3zL = -pl.339°, t/ c = 0.106 (3.126) 

Figures 3-25 and 3-26 ( a- c) show that cascade geometry and velocity distributions 

for /3
1 

= - 30° and - 40° respectively. For this cascade 500 points were used to find 

the cascade-blade shape, and as seen in figure 3-27 (where the points are shown as 

symbols) the stretching about the leading edge is extreme. 
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Figure 3-25 Cascade design with a solidity of one. 
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Figure 3-26 Velocity distributions for /31 = -30° and -40° 
corresponding to the cascade shown in figure 3-25. (Each 
velocity distribution normalized by the fl.ow speed 
normal to the cascade front.) 
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(figure continues) 
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Figure 3-26 Continued. 

(figure continues) 
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Figure 3-26 Continued. 
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Figure 3-27 Cascade blade for cascade shown in figure 3-25 with symbols 
plotted at each of the 500 points about the cascade blade to 
illustrate the stretching near the leading edge. 
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This last example illustrates the practical limitation of the method as previ­

ously discussed. Attempting to obtain solidities much greater that one results in 

stretching so severe about the leading edge that the integration of the cascade-blade 

coordinates by equation (3.81) leads to numerical inaccuracies resulting in a cascade 

blade which does not close on itself. This aside, the method should prove valuable 

in the design of cascades for solidities up to one. 

3.3 ANALYSIS OF AN INFINITE CASCADE OF AIRFOILS 

One approach to solving the analysis problem for cascades by conformal map­

ping is to map the infinite cascade first to a single body. Then, this single body, 

through subsequent mappings, is taken to a circle. By far the most common ap­

proach to determining the last mapping is to use Theodorsen's method (e.g., Garrick 

1944; Howell 1948; Hall and Thwaites 1963). The current analysis method differ­

s significantly from previous methods in two ways. First, the mapping from the 

infinite cascade to the circle is done in one step. Second, rather than solving for 

the mapping itself, the mapping derivative is determined from which the velocity 

distribution is directly obtained. 

The current analysis method for cascades draws on the analysis method for iso­

lated airfoils as discussed in section 2.3. In application of that method to cascades, 

it is necessary to determine not only s( cf>) but also a= A ei °'. From these quantities 

follow Q( c/> ), then P( c/>) and finally the velocity distribution. To this end, an iterative 

technique must be employed to determine s( cf>), A and a from the known surface 

angle 0( s ), solidity u and stagger x for a given cascade. As to be discussed, the 

method determines estimates of s( c/>) from the known 0( s) and from the estimates 

of A and a. In this process, a two-dimensional Newton iteration is performed to 
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determine the correct values for A and a which give rise to er and x for the given 

cascade. 

Starting from the estimates 5i ( </>)' Ai and a i' the estimate (l ( </>) is determine 

by [equation (3.109b )] 

(3.127) 

This estimate for Q( </>) will not necessarily satisfy the integral constraints (3.101 b) 

and (3.l03a,b). A correction, however, can be applied in a manner similar to that 

discussed in section 2.3 for the isolated airfoil. It is not possible to correct (Ji ( </>) 

by the simple and intuitive procedure used for the isolated airfoil-that procedure 

which involves subtracting-off quantities in order to satisfy the conditions on the 

mapping coefficients. Simple conditions on the coefficients do not exist for the 

cascade; however, integral constraints for the cascade are known and may be used 

to determine the correction as done in the alternative approach for the isolated 

airfoil (section 2. 3). 

The new estimate for Q( </>) is given by 

(3.128) 

Substitution of (Ji+l ( </>) into the three integral constraints on Q( </>) leads to three 

linear equations for the three unknowns k1 , k2 and k3 • After solving for these three 

coefficients, Qi(</>) may be corrected according to (3.128). The new estimate f>i+l ( </>) 

is then determine from (Ji+l ( </>) which together define the mapping derivative about 

the circle. The cascade-blade coordinates may then be obtained through equation 

(3.81 ). Based on the resulting cascade geometry, the corresponding er and x are 

determined. 
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Using the same initial estimates for si ( <P) and ai, a perturbation is added to 

.Ji, and the process is repeated for the corresponding u and X· From this pertur­

bation and the changes in u and x, the sensitivities of u and x to changes in .Ji 

are computed. Next, using si( </J) and .Ji, a perturbation is added to ai , and the 

sensitivities of u and x to changes in ai are determined by repeating the process 

again . Based on the resulting Jacobian, the current u and x from the unperturbed 

solution, and the known u and x for the given cascade, the corrections 8A and 86: 

are determined to give the new estimates .Ji+l = .Ji + 8A and ai+l = a; + 86:. 

With these new estimates and the estimate 5i+l ( <P) from the unperturbed solution, 

the entire process is repeated. When successive estimates si ( <P) and 5i+ 1 ( <P) cease 

to differ significantly, the solution has converged, and the velocity distribution may 

be computed for any fl.ow angle according to equation (3 .114). Whether or not the 

proposed method proves feasible awaits practical implementation of the theory. 
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Chapter 4 

SUGGESTIONS FOR FUTURE WORK 

The inverse airfoil and inverse cascade design problems as presented belong to 

a class of solutions which involve mapping the physical flow into the flow about 

the circle. For the isolated airfoil problem, the flow in the circle plane results from 

a vortex-source infinitely far upstream and a vortex-sink infinitely far downstream 

which inside the circle form an image represented by a doublet and vortex at the 

circle center. When one of these spirals at infinity is brought to a point at a 

finite distance from the circle, the flow may be mapped into a cascade so long as 

the mapping is singular (by a first-order pole) at the location of the spiral. The 

cascade need not be an infinite cascade as presented in Chapter 3. By introducing 

z 1 IN = ( + c0 + ci/ ( + · · ·, the circle may be mapped into a radial cascade with N 

blades. 

If instead the vortex-sink infinitely far downstream of the circle is brought to a 

point on the circle (in which case the vortex-sink becomes simply a sink) , this point 

may be mapped infinitely far downstream by again introducing a first-order pole 

in the mapping derivative at the location of the sink. Such a flow in the physical 

plane would correspond to the flow about a semi-infinite body. If the vortex-source 

infinitely far upstream is then brought to a point at a finite distance from the 

circle and another first-order pole is introduced into the mapping at the location of 

the vortex-source, the flow may be mapped into an infinite cascade of semi-infinite 

bodies. Moving the vortex-source from off the circle to a point on the circle so that 

a source and sink exist on the circle results in a flow which may be mapped to the 

flow about a channel or more importantly the flow within a channel. This channel 
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may be curved depending on the location of the source and sink. 

It is not strictly necessary that there exist on the boundary of the circle just one 

source and one sink. These singularities may be split into any number so long as 

the sum of the strengths of the sources and sinks is zero. The mapping then must 

contain first-order poles at the locations of each source and each sink which may 

then be mapped into a channel with as many branches as there are singularities. 

These singularities may also be combined into a single doublet which may then be 

mapped into the flow over (or under) a mound. 

For each of these flow problems, all resulting from the flow about a circle deriv­

able from the Milne-Thomson circle theorem, there will be conditions on the map­

ping for the inverse design problem. Depending on the particular problem, these 

conditions may ensure closure (airfoils, infinite and radial cascades) or may set the 

spacing between adjacent bodies (cascades), the gap width (semi-infinite bodies, 

cascades of semi-infinite bodies, channels), or the flow direction at infinity (airfoils, 

cascades, semi-infinite bodies, channels, mounds). By far the two most important 

problems of this class are airfoils and cascades which have both been presented in 

this thesis. 

The airfoil design method presented in this thesis could be further improved to 

allow for the prescription of additional boundary-layer variables, for instance, cf 

and 82 • This would enhance the utility of the method. Sometimes it is not always 

clear what is the best distribution of a particular boundary-layer parameter that 

gives rise to a desired airfoil performance. In this case, the design effort must rely 

on practical experience. Further studies are suggested to ascertain what type of 

boundary-layer distribution is needed for a desired airfoil performance. 
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Chapter 5 

CONCLUSIONS 

5.1 ISOLATED AIRFOILS 

In this thesis , an inverse airfoil design technique has been developed by coupling 

a potential-fl.ow multi-point inverse airfoil design method with a direct boundary­

layer method. It has been shown that satisfying the integral constraints , continuity 

constraints , and stagnation point velocity relationships for the potential-fl.ow inverse 

problem does not guarantee a normal airfoil shape, let alone one which matches 

all of the design requirements. The myriad of possible design requirements may, 

however, be selectively satisfied (so long as they are compatible) by reformulating 

the solution and solving the equations by multi-dimensional Newton iteration. This 

approach makes it possible to specify single parameters such as maximum thickness, 

enclosed area, pitching moment , and also distributions of velocity and boundary­

layer fl.ow physics along segments of the airfoil for the given conditions such as angle 

of attack and Reynolds number. Although the current approach makes use of an 

incompressible-fl.ow inverse method for airfoil design, a compressible-fl.ow inverse 

method could be used in place of the present method. Likewise, the boundary-layer 

method could be replaced. As it stands, fairly sophisticated airfoil design studies can 

now be made with relative ease, and this should ultimately lead to improvements 

in new airfoil designs . 
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5.2 INFINITE CASCADES 

For the infinite cascade, there exists a wide variety of conformal mapping solution 

techniques because there are many alternative domains onto which the cascade may 

be mapped. These solution techniques differ further by the way in which the cascade 

is ultimately mapped into the final domain. Typically, a sequence of mappings is 

used to take the cascade into first an intermediate domain in order to either remove 

the cascade-blade trailing-edge sharp corner or reduce the cascade to a single body or 

both. From this domain, further intermediate mappings may be used to eventually 

take the cascade into the plane in which the flow is easily determined. In the present 

method, this task has been greatly simplified by employing just one mapping to go 

from the infinite cascade to a single circle in the presence of a single spiral. It has 

been shown that exact solutions for the infinite cascade may be derived in a way 

almost perfectly analogous to the exact Joukowski airfoil solution. 

The single mapping used to generate exact solutions may be generalized to 

allow for multi-point inverse design of an infinite cascade of airfoils. All previously 

existing inverse methods for cascade design are only capable of solving the single­

point inverse design problem. The current approach is almost perfectly analogous 

to the inverse method for isolated airfoil design as presented. As discussed, the 

mapping is introduced in its derivative form which is singular at a point exterior 

to the circle. From this point in the cascade plane there emanates a vortex-source 

which is the image of the inlet flow in the cascade plane. In forming the complex 

velocity in the cascade plane, this vortex-source and the singularity of the mapping 

cancel and thereby leave the complex velocity in the cascade plane regular at all 

points exterior to the cascade as required. From this key step of expressing the 

mapping derivative in its general form there follows all the necessary conditions for 
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the potential-flow inverse design problem. In the process, it is readily seen that 

multi-point design is a natural outcome of the formulation . 

As demonstrated, solutions to the inverse problem for the cascades are unwieldy 

unless Newton iteration is employed to permit the specification of parameters which 

ultimately dictate in large part whether or not the cascade blades are crossed or 

uncrossed. Iteration may also be performed to control cascade solidity and stagger 

in addition to parameters of interest in the isolated airfoil design problem. Al­

though the current implementation of the inverse cascade design theory does not 

take full advantage of the ideas expressed and illustrated in the isolated airfoil de­

sign problem, there are no fundamental limitations which prevent this extension 

of the method. The method, however, is limited by the fact that numerical errors 

are encountered if an attempt is made to design a cascade with a solidity greater 

than one. In that case, let it be said that there is no difficulty with the method in 

designing cascades with solidities up to one. 
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Appendix A 

CONTINUITY CONSTRAINTS 

The condition that the mapping must be continuous (excluding the trailing-edge 

point) about the circle may be viewed without regard to the harmonic function P( ¢ ). 

It is only necessary to state that ldz / d( I is continuous. This condition of continuity 

leads to a condition on the design velocity distribution as follows. 

Consider as depicted in figure A-1 the velocity distribution about the circle. 

Two velocity distributions w( ¢) for a 1 and a 2. are shown. Shown in figure A-2 are 

the velocity distributions v( ¢) about the airfoil for the same two angles of attack. 

The velocity distribution about the circle is known. With regard to the airfoil, the 

velocity level v 1 is known for a 1 • The question is to find v2 for a 2 • 

To this end, it may be written that 

I 
dz I = I dF / d( I = w 
d( dF/ dz v 

(A.I) 

This quantity may be expressed at ¢ = ¢i for a = a 1 , that is, 

I~~ I .~.; W1 

V1 
(A.2) 

or for a = a2, that is, 

I~~ I.~.; 
W2 

V2 
(A.3) 

Since ldz/d(I is continuous, it must be true from equations (A.2) and (A.3) that 

- =- (A.4) 

Rearrangement gives the desired velocity level v 2 , i.e., 

(A.5) 
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w 

Figure A-1 Velocity .distribution about circle for a 1 and a 2 • 

v 

Figure A-2 Velocity distribution about airfoil for a 1 and a2. 
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More physically from equation (A.4), it follows that 

(A.6) 

As seen in the figures A-1 and A-2, the ratios of the jump in the velocity on the 

circle and on the airfoil are equal as indicated by equation (A.6). 
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Appendix B 

COEFFICIENTS FOR ISOLATED AIRFOILS 

The coefficients ajk and bj found in equations (2.66a-d) are determined by sub­

stituting the expressions for v*(</>) and a*(</>) [equations (2.60a- b)) into the three 

integral constraints on P( </>) and the trailing-edge continuity constraint given by 

1
</>1 

P( </>) d<f> = 0 
</>o 

1
</>1 

P( </>) cos</> d<f> = 7r(l - e) 
</>o 

1
</>1 

P( </>)sin</> d<f> = 0 
</>o 

P( </>o) = P( </> l) 

(B.Ia) 

(B.Ib) 

(B.lc) 

(B.Id) 

where </>o = 0 and </> l = 27r. For an arbitrary number of segments, v*( </>) and a * ( </>) 

may be expressed as 

(B.2a) 

v*(<f>) = Vi(l + Vi~~i)) 
a*(</>) = ai i=2,3, ... , J - 1 (B.2b) 

v*(</>) = v1w(</>) 

a*(</>) = a1 (B.2c) 

which upon substitution into equation (2.20) leads to 

(B.3a) 



P(</>) = -ln{ (2sin</>/ 2) - € Vi(l + vi(~i))} 
2Jcos(</>/ 2 - a:i) J Vi 

{ 
(2 sin </>/ 2)-€ _ } 

P(</>) = -ln 2Jcos(</>/ 2 - a:1) l v1w(</>) 

For later use, the following functions are defined 

T( </>, i) = ln I cos(</> / 2 - ai) I 

T(i,j) = ln l cos(</>i/2 - a:i) I 

U( </>, i) :: ln ( 1 + vi~~i)) 
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i = 2,3, .. . ,I - 1 

(B.3b) 

ef>ff ~ </> ~ </>1 (B.3c) 

(B.4a) 

(B.4b) 

(B.4c) 

U(i) = in(1 + vi(~i = ~;- </>i-i)) (B.4d) 

where </>i-1 ~ </> ~ </>i and ~i = </> - </>i-1 · 

With these expressions for P( </>) and the functions defined above, the first inte­

gral constraint [equation (2.66a)J leads to 

(B.5) 

where 

(B.6a) 

(B.6b) 

(B.6c) 

(B.6d) 
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and 

+• [( ¢F - ¢0 ) ln(2 sin fr / 2) + ( 4>1 - ¢ F) ln(2 sin ¢F/ 2) + l:F ln(2 sin ¢ / 2) dq\] 
(B.7) 

Evaluating the second integral constraint [equation (2.66b )] gives 

where 

and 

1
</>lr 

a21 = - cos <P In wvv( <P) d<P 
<Po 

j
</JI 

a22 = - _ cos <P In Wff( <P) d</J 
<Pvv 

1
<Ps 

a23 = cos</J Inws(<P)d<P 
<Po 

j </JI 
az4 = _ cos <P In w s( <P) d</J 

<Ps 

I 

b2 = - 7r(l - €) + ~ { ~(<Pi - <Pi- i) cos 2ai+sin2ai[T(i, i) - T(i- 1,i)]} 

+ ~ [ U( i) sin ¢ ; - t~, U( ¢ , i) cos 4> def>] 

+€ [ (sin <PF - sin <Po) ln(2 sin <PF / 2) 

(B.8) 

(B.9a) 

(B .9b) 

(B .9c) 

(B.9d) 
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_ _ (PF ] 
+(sin <h-sin </> F) ln(2 sin</> p / 2)+} </> F cos</> ln(2 sin</> / 2) d<f> (B.10) 

The third integral constraint [equation (2.66c)] becomes 

(B.11) 

where 

and 

</>n-
a31 = - r sin</> ln wn-( </>) d<f> 

J <Po 

j </>1 
a32 = - _ sin</> ln wn-( </>) d<f> 

<Pn-

1</>s 
a33 = sin</> ln ws( </>) d<f> 

</>o 

j </>1 
a34 = _ sin</> ln w s( </>) d<f> 

</> s 

(B.lla) 

(B.llb) 

(B.llc) 

(B .lld) 

l 

b3 = ~ { ~( ¢; - \i>;- 1 ) sin 2a; - (I +cos 2a;)[T( i, i) - T( i - !, i)]} 

+ ~[U(i)(! - cos¢;)- fq,~~ 1 U(¢,i)sin¢d4>] 

+E [ ( - cos</> p + cos </>o) ln(2 sin</> F /2) 

((/>F ] 
( - cos </> l + cos (/> p) ln ( 2 sin (/> p / 2) + } </> F sin </> ln ( 2 sin </> / 2) d<f> 

(B .12) 

The integrals for the a2 k and a3 k coefficients are determined using the closed-

form expressions given by Eppler (1957). Also, the closed-form expressions for the 

integrals 

I = j cos</> ln I cos(</> /2 - O'.i) I d<f> and J = j sin</> ln I cos(</> /2 - O'. i) I d<f> 

(B .13a, b) 
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given by Eppler (1957) were used to determine some of the terms in b2 and b3 . 

The integrals involving the terms cos</; ln(2sin<f;/ 2) and sin</; ln(2sin<f;/ 2) are de-

termined using the closed-form expressions 

J cos <f; ln(2 sin <f;/2) d<f; = sin <f; [ln(2 sin ef>/2) - 1 / 2] - ef> / 2 ( B .l4a) 

J sin <f; ln(2 sin ef>/2) d<f; = cos <f; [1/2 - ln(2 sin <f;/ 2)] + ln sin q)/ 2 (B .l4b) 

All the remaining integrals are not expressible in closed form and are evaluated 

numerically using Simpson's rule. 

Finally, continuity of P( ef>) at the trailing edge [equation (2.66d)] results in 

where 

a43 = - lnws(<Po) 

and 

v i (sin 1' F / 2) b4 =T(I,I) - T(O,l)+ln - +dn . </; /
2 VJ sm p 

(B.15) 

(B.l6a) 

(B.l6b) 

(B.l6c) 

(B.l6d) 

(B.17) 
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Appendix C 

THE NASA NLF(l)-0115 GENERAL AVIATION AIRFOIL 

Through the use of modern, composite structures in general aviation aircraft , it 

has become possible for some time now to produce wings with a surface finish on a 

level capable of sustaining long runs of laminar flow. As a result , the use of laminar­

flow airfoils has increased, but such use has not been completely successful in all 

instances. Chief among the difficulties is the sometimes substantial reduction in the 

maximum lift coefficient CZmax due to surface contamination (e.g., bug strikes, rain 

droplets , exhaust spray). A decrease in the maximum lift coefficient produces an 

increase in the stall speed which is critical information needed by the pilot during 

take-off and landing. Not knowing the stall speed (i.e., not knowing the degree of 

contamination and its influence on Czmax) puts the pilot in jeopardy in these low­

speed flight regimes . Another problem is the fact that many laminar-flow airfoils 

have been designed with a long, favorable pressure gradient on the upper surface 

in order to sustain laminar flow over the greatest possible distance. While this 

design approach is sound from a flow physics standpoint, it leads to aft loading on 

the airfoil which in turn leads to a large nose-down pitching-moment coefficient. 

The trouble is that for some applications the large moment results in unacceptable 

trim-drag penalties. Furthermore, if such airfoils are used over sections of the wing 

with control surfaces , large control stick forces can exist and the control surfaces 

can have a tendency to 'float.' 

This section discusses the development of a new, laminar-flow airfoil designated 

the NASA NLF(l )-0115 and designed at NASA Langley Research Center by the 

author in collaboration with D. M. Somers and M. D. Maughmer. The new air-
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foil yields the performance gains usually associated with laminar flow but without 

the aforementioned drawbacks often erroneously attributed to having laminar flow. 

First, the specific design goals are outlined in the context of two NACA airfoils 

traditionally used in general-aviation applications. Next , the Eppler and Somers 

design method (Eppler and Somers l980a,b) used in the development of this new 

airfoil is discussed. Finally, a discussion of the design approach is presented. 

C.1 AIRFOIL DESIGN OBJECTIVES AND CONSTRAINTS 

Many of the design requirements for a modern general-aviation airfoil can be 

derived from other successful general-aviation airfoils . Most notably, the turbulent­

flow NACA 23015 airfoil (Abbott and Von Doenhoff 1959) has been a popular 

choice for general-aviation applications for many years . This fact stems not only 

from a broad lift range and low pitching-moment coefficient but also from small 

loss in Czmax due to surface contamination. The laminar-flow NACA 632-215 airfoil 

(Abbott and Von Doenhoff 1959) has also had wide appeal owing to its low-drag, 

yet it suffers from a narrow usable lift range as compared with the NACA 23015 . 

In light of these two airfoils, the principal goal of this airfoil-design effort is to 

maintain a broad lift range like that of the N ACA 23015 while realizing low-drag 

characteristics like those of the NACA 632-215 . In particular, low profile drag is 

desired over the range from c1 = 0.1atR=9 x 106 (the cruise condition) to C/ = 0.6 

at R = 4 x 106 (the climb condition) where the fact has been used that general­

aviation aircraft typically have a wing loading in the range 718 to 958 N /m2 (15 

to 20 lb / ft 2 ). While the new airfoil could employ flaps , it is required that without 

flaps C/max ~ 1.5 at R = 2.6 X 106 (the takeoff and landing condition). In case 

of surface contamination, the loss in Czma x should be no larger than 143-the 
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same as that suffered by the N ACA 23015 . To minimize trim-drag penalties, it is 

desired that emu 2 -0.055. Furthermore, for a control surface of 203 of chord, the 

hinge-moment coefficient should be no less than that of the NACA 63r215 , that is, 

CH 2 -0.0022. In this case, control stick forces and control-surface 'float' will not 

be excessive. Lastly, the airfoil maximum thickness should be 153. 

C.2 INVERSE AIRFOIL DESIGN METHOD 

The airfoil design process was performed using the Eppler and Somers Com­

puter Program for the Design and Analysis of Low Speed Airfoils (Eppler 1990, 

1991; Eppler and Somers l980a,b). Briefly, the inverse design method employs 

conformal mapping as discussed in section 2.1 in order to obtain the airfoil shape 

through the specification of the design velocity and angle of attack distribution in 

a multi-point manner. The method only allows for the design velocity distribution 

to be prescribed as constant over a given intermediate segment of the airfoil, that 

is, v( ¢) = 0. A one-dimensional Newton iteration scheme is used to allow for the 

specification of the trailing-edge thickness parameter Ks. Consequently, achieve­

ment of all of the design goals can be rather tedious since only Ks can be prescribed 

from the outset. For instance, the design of the NASA NLF(l )-0115 airfoil required 

two months of effort, although some of this time was spent in developing the design 

philosophy apart from working with the actual computer program. Incidentally, 

this rather tedious design process provided part of the motivation to develop the 

inverse design method as detailed previously in sections 2.1 and 2.2 . Finally, the 

viscous analysis method implemented in the program uses integral boundary-layer 

equations to predict airfoil performance, and transition is predicted by the H32 -R8 2 

method of Eppler (1990) to be discussed shortly. 
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C.3 AIRFOIL DESIGN APPROACH 

The result of the design effort is the NASA NLF(l)-0115, shown in figure C­

l along with three inviscid velocity distributions corresponding to the key flight 

conditions: cruise, climb, and takeoff and landing. The accompanying theoretical 

airfoil characteristics are shown in figure C-2 for R = 9 x 106 and 4 x 106 , the 

cruise and climb conditions, respectively. The zero-lift pitching-moment and hinge­

moment coefficients are within the design specifications: cm0 = -0.055 and CH = 

-0.0022 for a 203 of chord control surface. The airfoil thickness is 153 as desired. 

A comparison between the airfoil characteristics of the NASA NLF(l )-0115 and 

those of the NACA 23015 at the cruise flight Reynolds number is presented in 

figure C-3 . As seen, the design goal of obtaining a broad lift range like that of the 

NACA 23015 has been obtained. The effects of surface contamination are shown in 

figure C-4 for the takeoff and landing Reynolds number of 2.6 x 106 . It is observed 

that the predicted value of Czmax for the NASA NLF(l )-0115 airfoil is not overly 

sensitive to surface roughness. In fact, the lift loss due to contamination is only 

113 as compared with 143 for the NACA 23015 . 

In order to have limited sensitivity to surface roughness, the NASA NLF(l)-

0115 airfoil embodies upper-surface velocity distributions which behave as generally 

depicted in figure C-5. The velocity distribution for cz = 0.6 (the upper limit of 

the low-drag range at R = 4 x 106 ) is prescribed such that with increasing angles 

of attack the transition point moves rapidly forward to the leading edge. Thus, for 

C[ < 0.6, the pressure gradients confine transition to the short instability region 

just upstream of the main pressure recovery. For Cz > 0.6, however, the adverse 

pressure gradient over the forward portion of the airfoil moves transition to very 

near the leading edge . Consequently, because transition naturally happens early 
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Figure C-1 NASA NLF(l)-0115 airfoil and three inviscid velocity distributions. 



1.5 

0.5 

NLF(D-0115 
--- Re ~ 4.xlOb 
------- 9x l0~ 

/ 

I 
I 
I 
I 

/ 
/ 

/ 

I 
I 

/ 
/ 

/ 

/ 
I 

I 
I 

I 
I 

/ 
/ 

/ 

/ 

,,,­
/ 

-5 

T. • boundaty layer transition 
S. • boundory layer separation 
U. =upper surface 
L. =lower surface 

205 

I 1.5 S.U I 

5 

I I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I r.L. 
I 
I 
I 

15 
O-t-.....-...-.--........,_-.--r-.....-.....-,-r--T-,--.--.--.-...-T-ir--T-r""--t--4-'°"t-'-+-'--~~...o..+.....µ4---t-1.+-r-I 

0 5 10 0 0.5 x/c 

Figure C-2 Theoretical airfoil characteristics for the NASA NLF(l )-0115 airfoil. 



l5 

Ct 

0.5 

NLF(l)-0115. Re " 9xl011 

------- NACA 23015, 9x1011 

~,,,.,,..,,,,,,,,,. 

5 10 

, 

206 

T. "' boundary toyer transition 
S. - boundory layer separation 
U. =upper surface 
L ... lower surface 

1.5 
I \ 

I \ 
I 

T.U. I 
I 

I S.U. 1 I 
I 

I 

T .L. 

15 

0.5 x/c 

Figure C-3 Comparison of the NASA NLF(l)-0115 and NA.CA 23015 theoretical 
airfoil characteristics for R = 9 x 106

. 



L5 

0.5 

NLF(D-0115 
Natural T ronsi t ion 

------- Forced Tronsilion 

5 10 

207 

T. a boundary layer lronsition 
S. - boundary layer seporolion 
U. =upper surface 
L. .. lower surface 

1.5 
I 

I 
I 

, 

T.U./ 
I 

I 
I 
I 

I 

c,,lcxl 

5 a.' 10 

sv 
' 

T.L. 

0.5 x/c 

Figure C-4 The effects of surface roughness on the theoretical airfoil 
characteristics of the NASA NLF(l )-0115 airfoil for R = 2.6 x 106

. 



/transition 
higher 
at upper llmlt 
of low drag range 

0 
x/c 

Figure C-5 Behavior of the upper-surface velocity distribution that limits 
C/ ,maz sensitivity to surface roughness. 

208 



209 

on the upper surface at the maximum lift coefficient, C/max is not dramatically 

influenced by surface roughness . 

In figure C-6, a comparison is made between the airfoil characteristics of the 

NASA NLF(l)-0115 and those of the NACA 632-215 at R = 9 x 106 . At the cruise 

condition (ez = 0.1), the NASA NLF(l)-0115 airfoil has 253 less drag than the 

NACA 632-215, and this advantage is maintained over most of the operational en-

velope. Although both airfoils are designed to have significant runs of laminar flow, 

significant differences exist in the way in which this is achieved. These differences 

are best interpreted using the boundary-layer development plot as shown in figure 

C- 7 (a, b) Some preliminary discussion is required. 

In figure C- 7 (a, b), the local momentum thickness Reynolds number R 02 is plot­

ted vs. the shape factor H 32 . The Reynolds number R 02 increases monotonically 

downstream. Due to the logarithmic scale in R02 , the initial development of the 

boundary layer takes up a considerable portion of the plot while further down-

stream, as R02 increases , equally spaced points on the airfoil appear very closely 

spaced in the boundary-layer development plot . The shape factor H 32 can vary 

significantly with certain values of H32 corresponding to specific laminar boundary-

layer phenomena: H 32 = 1.620 corresponds to stagnation, 1.573 to the flat-plate 

Blasius boundary layer, and 1.515 to laminar separation. It is noted that while H 32 

decreases from the stagnation point toward laminar separation, H 12 increases. 

The Eppler method of predicting transition is based on the local values of H32 

and R 02 • To the right of the dotted-line boundaries given in figure C-7 (a), . the 

flow is assumed to be laminar. The vertical boundary on the left corresponds to 

laminar separation (H32 = 1.515) . If the boundary-layer development curve for 

a given condition intersects this boundary, laminar separation is assumed to take 
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place at that point. For the Reynolds numbers considered here, transition in the free 

shear layer happens quickly enough that transition can be assumed to take place 

at the point of laminar separation. The upper boundary corresponds to natural 

boundary-layer transition. This curve was empirically derived from wind tunnel 

and flight test data and should therefore be considered as a band since it is merely 

a fairing through the experimental data points. Once transition is predicted, the 

method switches to the turbulent boundary-layer equations. 

The two boundary-layer developments shown in figure C-7 (a) correspond to the 

two upper-surface velocity distributions of the NACA 632-215 at c1 = 0.4 and 0.8 

with R = 4 x 106 • In figure C-7 (a), both boundary-layer developments begin at 

the stagnation point (point A in the figure). For C/ = 0.4, transition is predicted 

to occur at point B via natural boundary-layer transition. As the angle of attack 

increases, the upper-surface boundary-layer development curve skews toward the 

left as the pressure gradient becomes steeper. For c1 = 0.8, the steep adverse 

pressure gradient immediately downstream of the velocity peak near the leading 

edge results in a more rapid decrease in H32 and causes transition to be predicted 

by laminar separation at point C. 

When the boundary-layer data is provided in this format, it reveals valuable in­

formation related to transition and thereby offers clues as to how to sustain laminar 

flow in the design of a new airfoil. For example, referring back to figure C-7 (a) 

at C[ = 0.8, transition is predicted to occur shortly downstream of the stagnation 

point. If the adverse pressure gradient in the region were reduced through modifi­

cation of the velocity distribution, transition would be postponed. By adjusting the 

velocity distribution based on the boundary-layer development plot, laminar flow 

can be extended further back on the airfoil and is limited only by boundary-layer 
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separation or one of the design constraints . As discussed by Somers (1992) and first 

suggested by Eppler (1990) , the widest possible low-drag range is achieved when 

the laminar boundary layer is held on the verge of laminar separation and then 

on the verge of boundary-layer transition. Such a scenario would be characterized 

by a boundary-layer development that follows the dotted lines in figure C-7 (a) . 

While certainly not suitable in all situations, this concept has been exploited in 

the design of other airfoils, such as those presented by Somers (1981), Somers and 

Horstmann (1985), and Maughmer and Somers (1989) and is now employed in the 

NASA NLF(l)-0115. 

Figure C-8 shows the boundary-layer development for the lower surface of the 

NASA NLF(l)-0115 at cz = 0.0 and R = 9 x 106 and corresponds to the lower 

limit of the low-drag range (as seen in figure C-2). First, the laminar-separation 

limit is approached quickly and is followed for a short distance up to point A. The 

boundary-layer development then essentially follows the transition-criterion curve. 

The beginning of the pressure recovery at point B causes the transition criterion to 

be satisfied which, in turn, invokes the turbulent boundary-layer calculations. 

For the upper surface, the critical design condition occurs at the upper limit 

of the low-drag range. The corresponding boundary-layer development is shown in 

figure C-9 for cz = 0.6 and R = 4 x 106 • Unlike the design of the lower surface, the 

upper surface is not designed to rapidly approach laminar separation. Rather from 

the stagnation point to 103 of chord, the design of the upper surface is dictated by 

C/max and surface roughness considerations as previously discussed. From 103 to 

503 of chord, however, the boundary layer is again forced to be everywhere on the 

verge of transition. 
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In summary, the NASA NLF(l)-0115 airfoil is the latest in a series of natu­

ral laminar-fl.ow airfoils designed at NASA Langley. It is specifically intended for 

use in general-aviation applications where high-speed, long-range performance is 

paramount. Incorporated into this design are favorable features derived from sev­

eral previously existing successful airfoils. These features, coupled with significant 

drag reductions made possible through the use of extended lengths of laminar fl.ow, 

should prove to make the NASA NLF(l)-0115 airfoil successful in application to 

general-aviation aircraft. 
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Appendix D 

COEFFICIENTS FOR INFINITE CASCADES 

The coefficients ajk and bj found in equations (3.ll6a-d) are determined by 

substituting the expressions for v*( ¢i) and /f ( ¢i) [equations (3 .115a-c )] into the three 

integral constraints on P(<P) [equations (3.lOla) and (3.102a, b)J and the trailing­

edge continuity constraint [equation (3.110)] expressed as 

1¢iI 
- (J' j p ( ¢i) d</J = p j 

<Po 
P(¢io) = P(¢i1) 

where 

1 

j = 1, 2,3 

0 

(D .la) 

(D .lb) 

1 
(J'j = T(<fi) and pj = 211'(1 - E) 1 ( A ) 

1 - A 2 n J 1 - 2A cos a + A 2 

and 

sin( a - ¢i) 
T( ¢i) 

-11'(1 - E) · 
A arg(A - e- 1 °') 

T(<jJ) = 1- 2Acos(a - ¢i) + A2 

The harmonic function P( <P) is expressed as 

-P(<P) = ln(2sin¢i/ 2)-<v(¢i)v*(¢) 

where 

v(¢i) = - * ~* 
2AV (¢i)I cos( a+ ,B (¢i) - ¢ / 2)1 

(D .2a , b) 

(D.3) 

(D.4) 

(D.5) 
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Upon substitution and simplification the following results are obtained for the 

coefficients ajk and bj (j = 1, 2, 3): 

and 

Continuity at the trailing edge gives (j = 4) 

and 

a41= lnww(<Po) 

a43 = - ln w s (<Po) 

b
4 

= ln{ V 11 cos( a+ /3 I - <PI/2)1 v1 (sin (f>p /2)"} 
111 I cos (a + (3 1 - <Po/ 2) I v I( sin ¢ F / 2)" 

Allintegralsare evaluated by Simpson's rule. 

(D.6a) 

(D.6b) 

(D.6c) 

(D.6d) 

(D.7) 

(D.8a) 

(D.8b) 

(D.8c) 

(D.8d) 

(D.9) 




