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Multipoint Inverse Design of an Infinite Cascade of Airfoils 

Michael S. Selig* 
University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 

Tbis paper describes a method for the design of an infinite cascade in incompressible Dow. The method is 
bued on conformaJ mapping and does aJlow for multipoint design. The cascade blade to be determined is 
divided into a desired number of segments. Over each segment. the velocity distribution is prescribed together 
with an inlet or outlet Dow angle at which this velocity distribution is to be achieved. In this way multipoint 
design requirements can be met. It is necessary to satisfy 5everaJ conditions that arise to guarantee compatibility 
with the inlet and outlet Dow 85 well 85 dosure of the cascade blade. Satisfaction of these conditions does not 
necessarily result in a cascade with aU of the desired characteristics. For example. the cascade blades may be 
bulbous or crossed. Through Newton iteration. however. the desired characteristics may be prescribed directly. 
Four examples will be iUustrated to demoustrate the capability of the method. 

Introduction 

A PRACTICAL method for the multipoint inverse design 
of an infinite cascade of airfoils in incompressible flow 

is described. The method should prove useful in the design 
of guidevane cascades for internal flow systems. such as wind­
tunnel turning vanes. Moreover. in the design of a ducted 
axial flow fan. the annulus is often divided into several annular 
segments from hub to tip. each segment of which is designed 
based on the relatively two-dimensional local flow conditions. 
Five annular segments are usually enough to account for the 
considerable three-dimensional effects. The current method 
could be used to design each annulus. Likewise, simple com­
pressibility corrections could be incorporated into the present 
method to aid in the preliminary design of axial compressor 
and turbine blades, albeit supercritical flow effects cannot be 
accounted for by such a combined method. Nevertheless, many 
inverse methods (two-dimensional and three-dimensional) need 
an initial configuration for starting their iterations. The 
present method could at least provide suitable initial config­
urations. 

Of particular importance in the process of designing a new 
cascade (whether it be for two-dimensional or three-dimen­
sional applications) is the ability to control the performance 
at more than one operating point. Most inverse cascade design 
methods are only capable of solving the single-point design 
problem; that is, the velocity distribution can only be specified 
for one angle of attack. Whether or not the cascade satisfies 
multipoint design objectives is determined through postdesign 
analysis at the various operating points. The current method 
has the explicit capability of handling multipoint design re­
quirements from the start. As will be discussed. the cascade 
blade section can be divided into any number of segments 
along each of which. for either a given inlet or outlet angle. 
the velocity is tailored to correspond to a desirable aerody­
namic behavior. Thus. multipoint design objectives can be 
satisfied during the actual design effort as opposed to design­
ing by a single-point method and examining multipoint ob­
jectives afterwards. 

It is also important to be able to control the trailing-edge 
angle since most turbine and manv cascade blade sections 
have rounded trailing edges. The present method allows the 
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designer to specify directly the desired trailing-edge angle in 
the range from 0 deg (a cusped trailing edge) to 180 deg (a 
rounded trailing edge). A rounded trailing edge raises the 
Issue of where should the rear stagnation point be located. 
Although this issue is not addressed here. the ability of the 
present method to allow for the specification of a rounded 
trailing edge and also the outlet flow angle paves the way for 
the introduction of viscous considerations as discussed in 
Gostelow.' 

A computer code (CASCADE) has been developed based 
on the current approach. The design method is analogous to 
that widely used for multipoint inverse airfoil design described 
in Refs. 2-5. Thus, it is expected that the current cascade 
design approach will have similar appeal because it allows for 
multipoint design and runs rapidly on a personal computer. 

. To place this work in a broader context. it is helpful to 
diSCUSS concurrent developments in airfoil and cascade design. 
Mangler> and LighthilF were the first to resolve the mathe­
matical difficulties believed to be associated with inverse air­
foil design.8.9 These theories. which were based on conformal 
mapping, showed that for the inverse airfoil problem the spec­
ified velocity distribution must statisfy certain conditions. In 
so doing, the conformal transformation connecting the circle 
and airfoil plane can be found. From this transformation. the 
airfoil shape can be determined. 

For the cascade, Lighthill lO made a significant' contribution 
following along similar lines. In almost analogous fashion to 
the isolated airfoil problem. he found that the specified ve­
locit~ ~istribution about the cascade blade must satisfy special 
conditions for the mathematical problem to be well posted. 
Once these conditions are satisfied. the mapping can be de­
termined to give the cascade geometry. 

Advancements in airfoil design continued through improve­
ments in numerical techniques and through the use of com­
puters. Added to this was the multipoint design theory of 
Epple~ (summarized in Ref. 2). Specifically, this theory made 
It poSSible to divide the airfoil into segments and specify over 
each segment the desired velocity distribution along with the 
angle of attack at which that velocitv distribution is to be 
achieved .. C~nsequently. conformal mapping as applied to the 
mverse airfOil problem remains in favor owing to the abilitv 
to solve rapidly and conveniently the multipoi~t design prob­
lem. 2 •3 

Parallel developments in cascade design through the use of 
conformal mapping have not been equally successful. In fact. 
few recent efforts have been aimed at practical cascade design 
by means of conformal mapping. II In current use for incom­
pressible flow are cascade design methods based on distrib­
uted singularity methods. 12- 14 Such methods. however, are 
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only directly applicable to solving the single-point inverse 
cascade design problem. Although conformal mapping has 
been applied to solve the single-point design problem,U.15-IS 
it is not limited to this. Conformal mapping has been em­
ployed to solve the two-point inverse design problem for which 
the velocity distribution is prescribed for one inlet angle on 
the upper surface and a different inlet angle on the lower 
surface. 10.19 In effect, this gives the cascade a working range. 
The prospect of applying conformal mapping to the multipoint 
inverse cascade design problem has provided the primary im­
petus for the work reported here. 

Tbeory 
The point of departure for inverse cascade design through 

the use of conformal mapping differs with respect to the in­
verse airfoil design problem in that for the cascade no standard 
transformation exists. Often. several mappings are used in 
sequence to take the cascade into a circle. For instance, 
Papailiou. 17 Garrick.20 and Howe1l21 first used a periodic map­
ping to take the cascade into a single closed contour in the 
Z' plane. In this plane, points infinitely far upstream and 
downstream of the cascade are represented by a vortex source 
and vortex sink, respectively. Then. through two or more 
regular mappings. the contour is taken to a nearly circular 
contour. Finally, by Theodorsen's method or a similar pro­
cedure, this near circle is mapped via a general regular trans­
formation into a circle about which the flow may be readily 
determined. 

In a different approach involving only two mappings, 
LigbthilllO uses first 

eZ = Z' (1) 

to map each cascade blade (spaced 2m apart) onto a single 
airfoil. In this case, points infinitely far upstream (z = x + 
;y - - 00 + iy or simply z - - 00) are mapped to the origin, 
Z' = 0, where there exists a vortex source representing the 
image of the inlet flow in the cascade plane. Points infinitely 
far downstream (z = x + iy _ 00 + iy or simply z _ 00) 
corresponding to the cascade outlet flow are mapped to in­
finity, Z' = 00. Second, the derivative of the regular mapping 

I C I Cz 
Z =(+CO+"(+(2+··· (2) 

is used to take the single airfoil immersed in the vortex source 
into a circle immersed in the vortex source. 

As previous methods have demonstrated, 10.15-21 it is math­
ematically advantageous to isolate the singularities of the flow 
in the circle plane by an elementary transformation such as 
Eq. (1). Such an initial elementary transformation requires 
that one or more further mappings be employed to take the 
single contour into a circle. Unfortunately, for multipoint 
design via conformal mapping, it becomes difficult to solve 
the inverse problem if more than one transformation is used. 
In favor of solving the multipoint design problem conveniently 
but at the expense of involving more mathematical rigor, one 
transformation is used in the present method.5.22 

General c-de Tnmsformation 

In the current approach, a single transformation is obtained 
by first considering Eqs. (1) and (2). If the spacing between 
the cascade blades is the complex parameter I. the transfor­
mation (1) becomes 

exp[(21TiII)z] = Z' (3) 

By elimination of z' through Eq. (2), the general transfor­
mation is given by 

[(2 . ] C1 c, 
exp 1T1/l)Z = ( + Co + "( + (; + ... (4) 

which takes the unit circle to the infinite cascade (Fig. 1). 

As may be seen by Eq. (4). the outlet flow (z - 00) maps 
to infinity, and the inlet flow (z - -00) maps to the point ( 
= a according to Fig. 1 here 

lim exp[(21Ti/l)z] I. ( C 1 c, 1m (+co+-+~+ ,-- (( 
.. -) (5) 

or 

(6) 

Since the velocity is to be specified, it is most convenient to 
work not with the mapping (4) but with its derivative. From 
Eq. (4), the mapping derivative can be expressed conveniently 
as 

~ = (( ~ a) (1 - D 1-. exp(f(n] (7) 

where the factor exp[f(n] is a regular nonzero function for 
1 (I > 1 and has no zeros, poles, or discontinuities on 1 (I = 
1. The factor (1 - lIn l -. is introduced to map the point 
( = 1 to the cascade-blade trailing edge with an angle 1TE. 

The first factor is used to isolate the first-order pole. 19 
With ( = rei40 , the function f(n is expressed as 

.. 
fU) = per, cfJ) + iQ(r, cfJ) = L r-"'(am + ib",)e-- (8) 

",.0 

where per, cfJ) and Q(r, cfJ) are real functions, and the series 
converges for r 2: 1. On the unit circle, r = I, the real and 
imaginary parts of fW become 

.. 
P(cfJ) iii L (am cos mcfJ + b", sin mcfJ) (9a) 

.... 0 

.. 
Q(cfJ) ... L (bm cos mcfJ - am sin mcfJ) (9b) 

... ·0 

Casalde-Blade SPKinI and Closure 

To insure closure of the cascade blades, consider as depicted 
in Fig. 2 a closed contour Co about the unit circle that is 

?J. q* 

u 
fJ· 

Fig. 1 Mapping from ault drde to tile cucade. 
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o 
B~ 

B~ 

Fig. 2 Contour about the cirde as mapped to the cascade. 

o 

Fi&. J Coatoun in the cirde ptue as mapped to the cascade pIaae. 

mapped into a closed contour Bo about each cascade blade. 
For any given cascade blade, it must be true that 

,! dz=,! dzd(=O 
rBo rco d( 

(10) 

The contour C, + C2 + C3 + C. maps to B, + B2 + B3 
+ B. as shown in Fig. 3. Since no singularities are within the 
contour, the Cauchy-Goursat theorem gives 

J. dz 1. dz 1. dz J. dz - d( + - d( + - d( + - d( = 0 
0~ ~~ ~~ ~~ 

(11) 

With C2 + C. = - Co, Eq. (11) becomes 

J. dz 1. dz -d( + -d( = 0 
c, d( Cl d( 

(12) 

In the limit that C, becomes C~ and encloses the singularity 
at ( = a, the integral about C5 becomes by the residue theorem 

,! dd
Z 

d( = 211'; Res(a) = r dz = 1 
rc~ ( JB~ (13) 

The last quantity J B. dz is simply the cascade spacing I used 
in Eq. (4). With I ,,; 211'i, Eq. (13) gives 

Res(a) = 1 (14) 

With this condition, substitution of Eq. (7) into Eq. (13) gives 
by the Cauchy integral formula 

Res(a) = (1 - ;) '-0 exp{!(a)] = (15) 

Separation of Eq. (15) into the real and imaginary parts with 
a = Ae'" yields 

peA, a) = (1 - E) I" (VI _ 2A ~os a + A2) (16a) 

Q(A, a) = -(1 - E)arg(A - e-"') (16b) 

When these conditions are satisfied, the cascade blades will 
be closed, and the spacing will be 211'i. 

Cascade-Blade Coordbiates 

Cascade-blade coordinates are obtained by the integration 
of the mapping derivative about the unit circle to give 

x(f/I) + i (f/I) = -J (2 sin f/l/2)1-. exp[p(f/I)] 
y VI - 2A cos(a - f/I) + A2 

x exp{ll f/l12 - E( 11'12 - f/l/2) 

- arg(~ - Aei-) + Q(f/I))} df/l 

Complex Potential FIIDCdoa 

(17) 

The flow outside the unit circle is characterized by two 
singularities: a vortex source at the point ( .,. a and a vortex 
sink at the point ( = 00. By use of the circle theorem, these 
singularities .have reflections inside the circle, which when 
considered lead to the complex potential 

FU) = Q{/,,{( - a) + 1,,(1 - a() - I,,(] 

- ir*(f/I)[/HU - a) + 1,,(1 - a()] - ir*(f/I)/;'( (18) 

where Q is the source strength and a is the conjugate of a. 
At the present point in the' development, the inlet and outlet 
circulation strengths r*(f/I) and r*(f/I) may be thought of as 
constants. The notation n is used to denote either a conjugate 
variable (e.g., ti), an outlet flow quantity [e.g., r*(q,»), or as 
discussed later a cascade-blade lower-surface quantity. 

Since the point ( = 1 is mapped to a sharp trailing edge, 
the Kutta condition requires that ( = 1 be a stagnation point. 
This condition gives 

if*(f/I) = Q(a - ti) - it*(f/I)(_1 - a)(1 - a) 
1 - aa 

In this case, the complex velocity becomes 

(19) 

dF = _ (1 _ !) a{Q + ir*(f/I)) + a[Q - ir*(f/I»)( (20) 
d( ( «( - a)(1 - a() 

Inlet and Outlet Conditions 

The circulation strengths f* ( f/I) and f* ( f/I) and the source 
strength Q are determined by considering the necessary inlet 
and outlet flows depicted in Fig. 1. The outlet flow is given 
by 

I· dF . -*(..1.) I' dFld( Im-=u-lq 'I' = Im--
z- dz ,_z dz/d( 

(21) 

In the limit, this becomes through the use of Eqs. (7) and 
(20) 

U - ;-*(f/I) = Q - ir*(f/I) 
q lim exp[f«()] 

(22) 
,_z 

To relate the quantities U and q*(f/I) to Q and r*(f/I), another 
condition is placed on fU), namely, 

lim exp{f«()] = (23) 
c-
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or 

lim P(r. q,) = ° (24a) 

lim Q(r, q,) = ° (24b) 

It therefore follows that 

Q = u, (25) 

Proceeding in a similar manner. the inlet flow is given by 

I· dF . *(,,1.) I· dFld( 1m - = u - lq '" = Im--
z- - s dz ._0 dz/d( 

(26) 

In the limit, this becomes 

i *(q,) = -u(o - a) + iq*(q,)~1 - 0)(1 - a) 
q 1 - aa (27) 

In comparison with the Kutta condition, Eq. (19), it is nec­
essary to have 

f*(q,) = q*(q,) (28) 

Thus, the circulation and source strengths art' now determined 
by the flow quantities in the cascade plane. 

Equation (27) gives an important relation between the inlet 
and outlet flow angles. If it is taken that 

tan p*(q,) = q*(q,), 
u 

tan p*(q,) = q*(q,) (29) 
u 

Eq. (27) can be expressed as 

2A sin a - (1 - A2)tan p*(q,) 

- (1 - 2A cos a + A2)tan p*(q,) = ° (30) 

Consequently, once the vortex-source location ( = a is se­
lected, the specification of the inlet flow angle p* ( q,) sets the 
outlet flow angle p*(q,) and vice versa. 

....... CaaItniats 
Equations (16a), (16b), (24a), and (24b) are conditions on 

the mapping at the points ( = a and (-+ 00, respectively. 
These conditions at these points may be related to the map­
ping on the boundary of the unit circle. Specifically. for 
l- 00, the Gauss mean value theorem applied exterior to the 
unit circle gives . 

1 i 2 
.. lim P(r, q,) = 2- P(q,) dq, = ° 

,-.s 'Ir 0 
(31) 

For ( = a, the Poisson integral formulas exterior to the unit 
circle yield 

1 (2.. 1 - A2 
-P(A. a) = 211" Jo P(q,) 1 _ 2A cos(a _ q,) + A2 dq, 

= -(1 - e)/H ( A) 
VI - 2A cos a + A2 

(32a) 

-Q(A. a) = 1. f" P(q,) A sin(a - q,) dq, 
1I"Jo 1 - 2A cos(a - q,) + A2 

= (1 - e)arg(A - r-) (32b) 

By Poisson's integral. p(q,) and Q(q,) are related as 

Q(q,) = 2~ r" P(I/I)cot 1/1 ; q, dl/l (33) 

Thus. if P(q,) is given. only Eqs. (31). (32a). and (32b) must 
be satisfied since Q(q,) may be determined from P(q,) through 
Eq. (38). 

The three integral constraints. Eqs. (31). (32a). and (32b). 
involving P(q,) and three integral constraints involving Q(q,)21 
are analogous in many ways to those integral constraints found 
for the isolated airfoil. J The essential difference is that for 
the cascade there are in a sense two freestreams: the inlet 
and outlet flows. For the isolated airfoil, only one condition 
in the form of an integral constraint must be satisfied to insure 
compatibility with the freestream flow. For the cascade. how­
ever. there are two conditions. First. there is the integral 
constraint, Eq. (31), on P(q,) to insure compatibility with the 
outlet flow. Second. the inlet flow condition leads to an al­
gebraic condition, Eq. (30), relating the inlet and outlet an­
gles. For the isolated airfoil, satisfaction of two integral con­
straints insures closure. Likewise, Eqs. (32a) and (32b) represent 
two integral constraints for closure of the cascade blades. 

Relation Between the ~ and the Compjex Velocity 

As yet, no reference has been made to the inverse design 
problem as classically posed by the specification of the velocity 
distribution. The necessary mapping conditions that insure 
closure and compatibility with the inlet and outlet flow have 
been presented. These special conditions may be satisfied by 
any number of mapping functions from which the cascade can 
be derived and the velocity distribution determined. Of course. 
the objective here is not to specify the mapping function per 
se. Rather, the goal is to specify the velocity distribution and 
from that derive the mapping, which then gives the cascade. 
With this in mind, the function p(q,)appearing in the integral 
constraints must be related to the complex velocity so that 
the velocity distribution may be explicitly involved in the in­
tegra.1 constraints. 

To ·this end, the complex velocity on the cascade blade is 
given by 

dF/ = dFld(I ••• , 
dz •• rb dz/d'I ••• , 

(34) 

where z = Zb is on the cascade blade and ( = (. is on the 
circle. In exponential form, the complex velocity on the cas­
cade blade is expressed alternatively as . 

dFI dz .-rb = v*(q,)exp[ -i9*(q,)] (35) 

where v*(q,) and 9*(q,) are, respectively. the design velocity 
distribution and flow angle about the cascade blade. On the 
circle, the complex velocity becomes 

dF/ = 2AV*(q,)lcos[a + p*(q,) - q,I2]I1(q,) (36) 
d, '_" 1 - 2A cos(a - q,) + A1 

where 

T(q,) = (2 sin q,12)exp{ -i[q, - .,,12 - 1I"*(q,)]} (37) 

V*(q,) = Vu2 + [q*(q,)]2 (38) 

"'*(q,) = {Of Os q, s 2[a + ji*(q,)] - 11" (39) 
11". 2[a + ji*(q,)] - 11" s q, S 211" 
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Also. from Eq. (7), it is found that 

dZ/ d, c.c, 

(2 sin cfJ2)1-'eP(t/J) 
VI - 2A cos(a - t/J) + A2 v(t/J) 

(40) 

where 

v(t/J) = exp{i[(1 - e)(7T/2 - cfJ2) - arg(e'- - a) + Q(t/J)]} 
(41) 

When Eqs. (35), (36), and (40) are substituted into Eq. (34), 
it is found that 

P(t/J) = _ IN {(2 sin ~)-'v'1 - 2A ~s a + A2 v*(t/J)} 
2AV*(t/J)lcos[a + ~*(t/J) - cPl2J1 

(42a) 

Q(t/J) = 8*(t/J) + 7T*(t/J) - t/l/2 

+ e( 7TI2 - cPI2) + arg( e'- - Ae'a) (42b) 

As desired. P(t/J) is now related to v*(t/J). 

MlIItipoiDt DesIp Capability 01 the Theory _ 

In this section. it is discussed why v*(t/J) and ~*(t/J) are 
allowed to vary with t/J. Figure 4 is used to aid in the discussion. 
The cascade blade is divided into a desired number of seg­
ments: five segments in Fig. 4. For this example, over the 
third segment (t/J2 s t/J s ~), the velocity distribution is 
prescribed as a constant v) for the outlet angle /1). For the 
fourth segment, the velocity dis.!Jibution is prescribed as a 
~nstant v. for the outlet angle ~ •. The functions v*(q,) and 
{3*(t/J) are made up" of thes~ piecewise functions defined by 
the values_ v), v., ~)' and ~., respectively. At the junction 
t/J) where ~*(t/J) jumps, v*(t/J) must also jump because P(t/J) 
must remain continuous as discussed next. 

Coadallity Coastraints 

The requirement that f«() be continuous on the boundary 
of the circle requires that P(t/J) be continuous. In this case, 
at the junction between any two segments, it is required that 

(43) 

where the notations ( ).. and ( ) _ are used to mean infini­
tesimally to the right and left of the point t/J;. Thus, for each 
junction on the cascade blade, a continuity condition arises 
to insure that for any given inlet or outlet angle the velocity 
distribution about the cascade blade is continuous. 

v.[V~~ P*[p:--_L 
~" ~---+ 

, ! ! ! ,.,J f! J ! , .... 

o ~ 4>, 4>. 2... 0 ~ 4>, 4>. 2 ... 

fig. 4 Daip yetodty dilbibadoll ad outlet Dow aqIe dilbibatioa 
for the ddrd ad foartll cMC8de ........ 

LadiIII- ad TrdiJIt-EdIe Stapetioa PoIat c-dltIoas 
By Eq. (42a), the design velocity distribution is expressed 

as 

v*(t/J) = 2AV*(2 sin t/J/2)'lcos[a + /3*(t/J) - cPl211 e-I'(-' 
VI - 2A cos a + AZ 

(44) 

As may be seen, stagnation points occur first at t/J = 0 and 
t/J = 27T (i.e., the trailing edge), when e :F 0, and second at 
t/J = 'Y'" 2[a + /3*(t/J)1 - 7T (i.e., the aerodynamic leading 
edge). Consequently, the design velocity distribution at the 
trailing edge must vanish as 

lim v*(t/J) - (sin t/l/2)<g +(t/J) (45a) _.--00 

lim v*(t/J) - (sin t/l/2)<g -(t/J) (45b) ___ 2 ... 

whereas, at the aerodynamic leading edge 'Y. the velocity dis­
tribution must vanish as 

lim v*(t/J) - Icos[a + /1*(t/J) - cPl2l1h+(I/I) (46a) .+-y 
lim v*(t/J) - lcos[a + /1*(t/J) - cfJ21Ih_(t/J) (46b) ---y 

and where g + (t/J), g -(t/J), h .. (t/J), and h -(t/J) are positive. non­
zero functions. 

Basic Solution Formulation 
It is helpful to identify the pertinent equations and outline 

the solution. From the onset, it should be mentioned that the 
specified quantities include 1) the design velocity distribution 
v*(t/J), 2) t1!e design inlet and outlet flow angle distributions 
~*(I/I) and ~*(I/I), 3) the point, = a, and 4) the trailing-edge 
parameter e. These quantities must be specified such that 1) 
the flow angle relation, Eq. (30), is satisfied. 2) the stagnation 
point velocity laws, Eqs. (45a), (45b), (46a), and (46b), are 
not violated, 3) the continuity constraints, Eq. (43)-one 
coming from each junction-are satisfied, and 4) the integral 
constraints, Eqs. (31a), (32a), and (32b), on P(t/J) are satis­
fied. 

Clearly, to me~t all of these restrictions. the specification 
of v*(t/J), ~*(t/J), ~*(t/J), a, and e cannot be entirely arbitrary. 
Thus, some degrees of freedom must be introduced into the 
specified parameters. Once this is done and all equations are 
satisfied, P(t/J) is formed. From P(t/J), the conjugate harmonic 
function Q(t/J) is determined.3 The functions P(t/J) and Q(t/J) 
together with a and E are then used to find the cascade-blade 
coordi!,lates through Eq. (17). Finally, for an arbitrary outlet 
angle ~ the velocity distribution v( t/J) is determined through 
Eq. (44). 

The remainder of this section is concerned with the solution 
of the governing equations and the introduction of the free 
parameters. First, the parameters a and e are specified. Next. 
the design outlet flow angle distribution ~*( t/J) is specified 
piecewise as 

(47) 

where I is the total number of segments about the cascade 
blade. Based on the various specified /3/ and a, the corre­
sponding inlet flow angle for each segment is determined 
through application of the flow angle relation, Eq. (30). AI-

)ernatively, for any given segment, the inlet flow angle can 
be specified, from which the outlet flow angle is determined. 
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At this point. the design inlet and outlet flow angles are 
known for each segment of the cascade blade. Next. the design 
velocity distribution for each segment is specified in a similar 
piecewise manner as 

Os cb s cb, 
cb,-, s cb s cb, i = 2. 3 ..... I - 1 
cb l - ,s cb S 21T 

(48) 

The design velocity distribution for the first segment (and 
similarly for the last) is specified by the function w(cb) that is 
scaled by the constant v,. For each intermediate segment 
(i = 2. 3 •.... I - 1). the design velocity distribution is 
simply a constant V,. 

In specifying the design velocity distribution. the stagna­
tion point velocity laws must not be violated. At the trailing 
edge. the design velocity distribution must therefore vanish 
as (sin cbI2)r. Thus. w(cb) and w(cb) must have as a factor 
(sin cbl2)r. The function w(cb). termed the upper-surface recov­
ery function. is defined as 

o S cb S cb, (49) 

where 

ww(cb) = 1 + K (cos cb - cos cbw). 0 S cb S cbw (50a) 
1 + cos cbw 

{

I _ 0.36 (cos cb - cos q,s) 2. 
ws(q,) = 1 - cos q,s 

1. q,s S q, S q,w 
(50b) 

(5Oc) 

where q,w == cb,. The lower-surface recovery function w(cb) is 
of the same form except that wW(cb). ws(cb). w,{q,). and the 
parameters /-L. K H • K, q,w. q,s. and q,F are replaced by ww(cb). 
w.~q,). wF(q,). {L. KH • K. ¢w == q,1_" ¢s. and ¢F' The function 
W',{p) insures the proper behavior of the velocity distribution 
at the trailing edge. Briefly. the functions ww"(q,) and 
wfH(q,) control to a great extent the main pressure recovery 
and the trailing-edge pressure recovery. respectively. Al­
though these functions were developed for use in inverse air­
foil design,2 they are suitable for cascade design. 

For each junction on the cascade blade, the continuity con­
straint must be satisfied. Satisfaction of this constraint for all 
junctions, excluding that at the trailing edge, gives 

II, 

Vilcos(a + [3, - cb/2) I 

i = 1. 2 •.... I - 1 

q,,12) I 
(51) 

This recursion relation represents I - 1 equations for a cas­
cade blade with I segments. The continuity equations serve 
to define the velocity levels V,. This is done by specifying one 
of the I velocity levels. The remaining I - 1 velocity levels 
are determined by these I - 1 continuity equations. 

The trailing-edge continuity constraint (applied at cb = 0 
and 21T) and the three integral constraints have yet to be 
satisfied. Substitution of v*(q,) and [3*(q,) into the integral 

constraints. Eqs. (31). (32a). and (32b). and the continuity 
Eq. (43) at the trailing edge leads to 

(52b) 

(52c) 

(52d) 

Once the remaining recovery parameters (K. K. q,s. q,s. q,F' 
and ¢F) are specified. the coefficients aii and hi are deter­
mined.1S Afterwards. the system of Eqs. (52a-52d) is solved 
to give /-L. {L. K H • and KH • With the values of these last pa­
rameters determined. P(q,) is completely defined. after which 
Q( q,) is determined and the cascade-blade coordinates follow 
by integration of Eq. (17). 

Newton Iteration 
Specification of v*(q,). (3*(q,). (3*(q,). a. and E and satis­

faction of the basic equations do not lead automatically to a 
cascade with all of the desired characteristics. such as soliditv 
and stagger. These latter quantities and others depend on th~ 
solution of the basic equations. Although some of the cascade 
design parameters are determined by the basic solution. many 
parameters are specified directly. These specified parameters 
include 1) a and E, 2) the segment arc limits q,i. 3) either the 
inlet or outlet flow angle. (3i or /3i. for each segment. 4) one 
of the I velocity levels Vi' and 5) the recovery parameters K. 
K, q,s. ri>s. q,F' and ri>F' Adjustment of each of these design 
parameters affects the solution of the basic equations and. as 
a result. the characteristics of the resulting cascade. 

It is possible to take advantage of this fact to achieve the 
desired cascade characteristics. For instance. a change in the 
modulus of a. that is. the distance A to the vortex source. 
mainly affects the cascade solidity u. Through Newton iter­
ation. the sensitivity of u to A can be numerically determined 
and used to find the change in A that leads to the desired u. 
This process is not limited to a one-dimensional Newton it­
eration. Several of the cascade design parameters may be 
iterated to achieve cascade characteristics that are not other­
wise directly specified. 

Demonstration of the Method 
In this section. four cascade designs are presented to illus­

trate the capability of the method. In each case the spacing 
is fixed to be 217' (I = 217'i). and the normal velocity is set to 
unity (u = 1). It should be mentioned that the examples 
presented are not intended for practical application since such 
would go beyond the scope of the present investigation. 

For the first cascade. four segments are selected over which 
the following inlet angles of attack and arc limits are selected: 

{3, = {32 = -15. {33 = {3. = -25 deg 

q" = 160. q" = 265.2. q,3 = 290 deg (53) 

The trailing-edge parameter is taken as E = 0 so that the 
trailing edge ends in a cusp. The vortex-source location a is 
set by 

A = 1.6. a = 270 deg (54) 

The flow-angle relation is used to find the outlet flow angles: 

/3, = /32 = - 45.46. /33 = /34 = -47.81 deg (55) 

For v, = 2.42. the velocitv levels are obtained from the con­
tinuity constraints and giv~n by 

V~ = 2.42. (56) 



780 SELIG: INFINrrE CASCADE OF AIRFOR.S 

Next. the recovery parameters are set as 

K = K = I, q,s = 40, _<bs = 320 deg (57) 

Since E = O. the parameters q,F and q,F are not used. The 
coefficients in Eqs. (52a-52d) are determined and used to 
find 

IL = -0.00208. iL = -6.19, KH = 6.91, KH = 8.86 
(58) 

With all of the design parameters defined. the cascade ge­
ometry is determined and shown in Fig. 5. Also shown in Fig. 
5 and the others that follow are the circle and vortex source. 

Even though all of the necessary mathematical conditions 
are satisfied by the cascade shown in Fig. 5. this alone does 
not always yield a practical cascade geometry. It is often de­
sirable to specify KH and KH by Newton iteration so as to 
control the geometry of the profile in the vicinity of the trailing 
edge.2-. In particular, to ir!tprove the cascade shown in Fig. 
5. the parameterS KH and KH may be specified through New­
ton iteration on the design parameters ~ and VI' i.e., 

q,2 ~ 0 = KH - 0.5, VI ~ 0 = KH + 0.2 (59) 

where the notation .. ~ .. means that the design parameter has 
a first-order effect on the corresponding equation. Moreover. 
the solidity is specified to be u = 0.6 by iteration of the 
parameter A, that is, 

A ~O = u - 0.6 (60) 

Except for ~. VI' and A (266.43 deg. 2.071. 1.246. respec­
tively). which are determined by Newton iteration. the values 
from the first example are used. The resulting cascade ge-

FII. 5 OrieDtation of the uait drde with respect to the Yortel( IIOIIIU 

aod resuItiaI cucade a-aetrY deIigDed without Newton jteration. 

FIg.6 Eumple cucade deIigDed with Newton jteration lor KH = 
0.5 and kH = -0.2. 

v 
......... -_ ............... 

oL-~--~~--~--~~--~~ 
0.00 0.25 0.50 0.75 1.00 

S 

FII.7 Vetodty diItI ....... ,or fJ = -15 (1IIIId line) aad -25 deg 
(doUed line) lor the -.de ......... Fla. 6. 

Fla. 8 Example CUCIIde designed with Newton iteration lor KH = 
0.l5 aad kH = -0.25. 

v 

Fla. 9 Velocity cUstributions lor (J = 4.55 (solid line) and 4.45 deg 
(dotted line) lor the cucade shown in Fia. 8. 

ometry is shown in Fig. 6. As seen. the cascade is normal in 
appearance in that it is not bulbous or crossed. The corre­
sponding velocity distributions are shown in Fig. 7 for the 
design inlet angles of -15 and - 25 deg. To verify the method. 
these velocity distributions were compared with those pre­
dicted by a bigh-order panel method analysis.23 and the agree­
ment was exceDent.5 

The next example illustrates a four-segment cascade de­
signed to have a rounded trailing edge (E = 1) and desired 
segment velocity distributions for specified oudet angles. The 
rear stagnation point in the present method is not determined 
with respect to viscous considerations; rather. it is set at the 
point ( = 1 in accordance with the mapping. The following 
parameters are specified: 

iJl = ~ = 4.55. iJ3 = ~. = 4.45 deg 

E = 1. A = 1.01, a = 171.25 deg, K = K = 1 

q,s = 25, <bs = 335, q,F = IS, <bF = 345 deg (61) 

Newton iteration is used to control the trailing-edge closure 
parameters as 

~ ~ 0 = KH - 0.25, 

The corresponding geometry and velocity distribution at the 
oudet design angles of attack are shown in Figs. 8 and 9, 
respectively. A blunter trailing edge could be achieved by 
specifying larger values for KH and KH. 

The last example is for a cascade blade with five segments. 
The following parameters are specified: 

/31 = /32 = 65, /33 = 70, /3. = /3~ = 60 deg 

E = 1118, A = 1.1, a = 105 deg, K = K = 1 

q,s = 40, <bs = 330, q,F = 20, <bF = 345 deg (63) 

Newton iteration is used to determine q,1t q,2' q,3' q,h and V, 

so that 

~ ~ 0 = KH - 0.8, q,. ~ = 0 = x.lc - 0.5 

VI ~ 0 = KH + 0.3 (64) 
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fig. 10 Eumple cascade designed with Newton iteration for KH = 
a.8, KH = -0.3, z,/c = 0.65, z.lc = 0.1, and z.lc = 0.5. 

v 

90 180 270 360 
• (dog) 

v 

Fla. 11 Velocity distribution plotted .. a functioa of", aad , for 
fJ = ~ ( ....... One), 6S (dotted line), aad 70 dq (1OIld line) for 
tile -.Ie IIIowD in Fig. 10. 

Fla. II Cuc8de blade or Fig. 10 with symbols plotted at each or tile 
120 poiaa to Illustrate point ..-:IDa. 

The arc limits cP\t ~, and cP. are determined so that these 
points map to a specified chordwise location. The cascade 
geometry is shown in Fig. 10. Figure 11 shows the velocity 
distributions as a function of ", and sic for the design inlet 
angles of 60,65, and 70 deg. 

This cascade illustrates a limitation of the method. By the 
transformation, the cascade spacing is fixed as 2m. The s0-

lidity can be changed only by changing the cascade-blade 
chord. Because the vortex source is mapped infinitely far 
upstream of the cascade, points very near the vortex source 
tend to be mapped far upstream. Thus, as the vortex source 
moves closer to the circle. the part of the circle nearest the 
vortex source stretches upstream in the cascade plane; that 
is. the cascade-blade chord increases, which, in turn. increases 
the solidity. When an attempt is made to increase the chord 
much beyond 211" (i.e., increase the solidity much beyond 
unity), the stretching becomes extreme near the cascade-blade 
leading edge. In this case, numerical integration of the map­
ping derivative [Eq. (17)] for the coordinates leads to inac­
curacies. For example. Fig. 12 shows the cascade blade as 
determined by using 120 equidistant points about the circle. 
As seen, the stretching is significant but. in this case, not 
significant enough to introduce inaccuracies into the blade 
coordinates. As suggested by Sanz,24 mapping the circle onto 
an ellipse would mitigate such difficulties in designing high­
solidity cascades. 

Conclusions 
This work demonstrates the intrinsic advantage of the use 

of conformal mapping in inverse cascade design. namely, its 

ability to allow for multipoint design. As shown by the first 
example cascade, however, this alone does not make the use 
of conformal mapping practical. The basic solution of the 
inverse problem can readily lead to unrealistic cascade profile 
shapes. i.e .• bulbous or crossed profiles. This difficulty and 
others discussed collectively account for the diminishing use 
of conformal mapping in cascade design. The current ap­
proach. however. overcomes these problems by basing the 
numerical solution formulation on a successful procedure de­
veloped for inverse airfoil design. In particular. Newton it­
eration is used to adjust some design parameters (which are 
otherwise directly specified) so as to obtain the desired cas­
cade characteristics (which are otherwise determined as part 
of the solution). Through this technique. characteristics such 
as the cascade solidity and stagger and the cascade-blade ve­
locity distribution may be directly controlled. As a result. 
practical multipoint inverse cascade design is now possible. 
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