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Monitoring of semi-autonomous systems increases situational awareness and is highly applicable to small
remotely piloted aircraft. The complex dynamics of aircraft flight were abstracted by modeling the system
with a neural network. The neural network accurately modeled the non-faulty dynamics for comparison to
the actual system. Since, the system included unmodeled lag, the residual calculation needed to account for
unmodeled lag. The method presented here decreased the effects of the lag on the residual. A ratio between the
predicted and measured system outputs was used to understand the faults and understand how the future per-
formance will be affected by the fault. A state machine abstraction offered a flexible fault-detection framework
that can be adapted and designed to detect different faults without requiring a full dynamics model of each
fault. Through using abstractions, the complex dynamics models required for fault detection were simplified
and a state machine offered the flexibility to detect different suites of faults.

Nomenclature

c = counter
p = roll rate
q = pitch rate
r = yaw rate
R = residual
RD = direct residual
RL = time-lagged residual
T = threshold
t = time
V = airspeed
Yp = predicted system output
Ym = measured system output
α = angle of attack
β = sideslip angle
δa δe δr = aileron, elevator and rudder deflections
φ = roll angle
θ = pitch angle
ψ = yaw angle

I. Introduction

The proliferation of small uninhabited aerial vehicles (UAVs) operating semi-autonomously over long distances
require local on-board monitoring of system performance. Monitoring allows a system operating with a degree of
autonomy to alert operators or other systems when a fault is detected that degrades the system performance. Software-
based monitoring does not require additional sensors or hardware and can easily be added to small UAVs. Software
based fault monitoring may be key to increasing the safety and trust of small UAV systems so they can have wider use
in civil airspace.1 Fault monitoring and alerting allow the remote operator or remote pilot to quickly know when an
aircraft flying autonomously needs additional attention.

In order to monitor system behavior and alert the operator when the system is not operating as expected, an accurate
model of the system is needed. Aircraft flight dynamics is traditionally modeled as a six degree-of-freedom (6 DOF)
system, that can be linearized at given angles of attack. Thelinearized model is only accurate close to the point of
linearization, so the linear model will break down away fromthe point of linearization. A limited model of behavior
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can be generated from the geometry, but higher-accuracy models require higher-fidelity data. This data can be acquired
from wind tunnel tests, computational fluid dynamics and flight test. Flight testing generates the most realistic results,
but with many limitations. In order to build accurate modelsfor fault detection, model fitting must be done and the
accuracy of the model must be verified. Beyond just modeling aset of complex decisions must be made to detect and
diagnose different faults.

Instead of trying to fully model the complex system of an airplane, a number of levels of abstraction made the
problem simpler and more tractable. Rather than developingcomplex continuous equations of motion, a black-box
estimator was developed in the form of a neural network. Thisblack-box abstracted the dynamics into a set of inputs
and outputs that allowed residuals to be calculated. As the next level of abstraction, a state machine was used to
monitor and observe the system. A state machine allowed complex decisions to be made on a small set of variables
that resulted from the outputs of the black-box model. Sincethere was just one dynamics model, a more complex set
of decisions was made within the state machine. Instead of spending time developing and checking numerous nominal
and faulty dynamics models, a single nominal dynamics modeland a well-designed state machine could accurately
predict faults.

A. Background

An artificial neural network is a collection of nodes that aresimple processors.2–4 Each node takes a set of inputs
and generates a set of outputs which are minimized to match the target outputs supplied during training. Through
randomized iterative processing, the nodes converge to modeling the behavior of the input and output data. Neural
networks can model non-linear relationships between inputand output states. The performance of a neural network is
based on training the neural network using existing test data, and they can be used to model aircraft behavior. Neural
networks offer a way to rapidly model non-linear dynamics over a wide range of flight conditions that can be used for
health monitoring.

A method was developed using neural networks for fault tolerant non-linear controllers.5 An augmented model
inversion controller was applied to a tilt rotor and an neural network was combined with linearized feedback to control
the aircraft during different stages of flight and during failures. The authors explored the stability of single hidden-layer
neural networks. Neural networks have been used to implement adaptive fault tolerant controllers.3,6 The effectiveness
of the controller depended on the selection of inputs and required tuning in order to be fault tolerant.6 In the literature,
the importance of the selection and structure of inputs and outputs was also noted.3

Neural networks map non-linear behavior well from limited data and have been used for system identification.4,7

Neural networks have been used to identify nonlinear parameters over a wide range of flight conditions. They were
used to model forces and moments on a turboprop over a wide range of angles of attack and sideslip angles.8 The
neural network accurately predicted the non-linear aerodynamic coefficients. Not only are neural networks accurate,
but often, after the training, they are computationally efficient. Neural networks were investigated as a computationally
more efficient method to model aircraft data used in flight simulators.2,8 Once trained, the neural networks accurately
simulated the non-linear aircraft dynamics much faster than a traditional coefficient-based simulator.

The wider problem of fault detection can be applied to the subset of aircraft health monitoring.9 In general residuals
are calculated as the prediction error. When the residuals exceed a threshold, a fault is detected. Depending on the
set of observed changes in residual(s), a decision matrix (often very large) can be used to identify different failure
modes of the system.10 The threshold can be a static value or the threshold can vary dynamically depending on the
system excitation.11,12 A dynamic threshold allows the fault threshold to vary with the system excitation, making the
fault detection work over a larger range of excitations. Instead of comparing modeled dynamics, the inputs can be
reconstructed from the measured system response. The reconstructed control inputs are compared to the actual control
inputs and mismatches indicate a fault.13 In addition, instead of comparing against a model, multipleindependent
predictions can be used. An example in the literature used independent inputs to different neural networks to classify
the maneuver that a helicopter was undergoing.14 If there was disagreement between the independent neural networks
then the system was assumed to be faulty. Many different modeling techniques and ideas can be used to generate
residuals and a variety of techniques can be used to find when afault has occurred.

B. Aircraft Models

Aircraft flight dynamics models have been developed to modelaircraft motion as an inertial mass in translation and
rotation with six degrees of freedom.15–17 The six degree-of-freedom system has three translation andthree rotation
axes where the full nonlinear equations are generally linearized at the low angle of attack equilibrium position. In
order to control the system, a number of actuators are available, and in this paper four basic actuators were used:
ailerons, elevator, rudder and throttle.

Each control surface affects the system in a different manner. In order to understand how each fault will be
observed in the system, the effect of different control surfaces must be understood. A transfer-function relationship
between the control surfaces and the outputs for perturbed flight had been developed.17 Each control surface primarily
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Figure 1. 33%-scale Edge 540 aerobatic RC model used in the simulations.

affects one to three state variables, and the results are shown in Table1. Both the ailerons and rudder affect roll angle
and heading, but the aileron generates a roll rate while the rudder generates a sideslip rate to change heading and affect
the roll through coupled dynamics. The elevator is used for pitch control and aircraft trim. Initially it drives the pitch
rate, but then holds a steady condition. This knowledge forms the basis of developing the neural networks by selecting
inputs and outputs that result in accurate fault detection performance.

Table 1. Control surface deflections and most correlated aircraft state output.

Aileron ⇒ φ , φ̇
Rudder ⇒ β̇
Elevator ⇒ α, θ , θ̇

C. Aircraft Simulation

In order to easily gather data similar to a flight test, a flightsimulator was used. The data from the simulator was used
to train the neural networks and investigate failure cases.FS OneTM was developed to simulate small RC aircraft and
can easily be applied to small scale UAVs.18 The simulator models aerodynamics on a component-by-componentbasis
over the linear and non-linear flight regimes. Forces and moments from each component, e.g., wing, horizontal tail,
vertical fin, etc., are independently calculated and then summed for the total airplane. Because the model is built-up
from components, any change in the aerodynamics of an individual component can easily be modeled without having
to recalculate the force and moment coefficients for the entire aircraft.

The aircraft used within the simulator was a 33%-scaled version of the aerobatic Edge 540 produced and distributed
by Horizon Hobby under the Hangar 9 brand.19 The simulator model is based on an RC model that has a wingspanof
97 in (2.46 m) and a length of 88 in (2.24 m). The aerobatic RC airplane weighs approximately 25 lb (55 kg) and is
powered by a 100-cc gas engine.

II. Models of Aircraft

Using data from FS One, a nominal neural network was trained on various inputs and outputs. The neural network
was a single hidden-layer feed-forward neural network setup with 10 hidden nodes and a delay of 0.1 sec between the
input state variables and the output state variables.20 Ten nodes were selected because the nominal networks had ten
inputs. The delay was selected to be long enough for the neural network to easily process the older inputs and make
a prediction against the current time. A number of differentneural network input and output sets were investigated.
Initially, a single input-to-output mapping labeled as ‘angular rates’ in Table2 was explored since there was just one
neural network with a set of outputs being the angular rates.In evaluating the neural network applicability to fault
detection, two performance criteria were used. First, the neural network needed to be able to accurately predict the
nominal model, and second, the model needed to show a significant difference with the injected faults. The ‘angular
rate’ model (see Table2) accurately predicted the dynamics and showed a significantdifference with aileron faults
using the roll rate. Faults on the other surfaces only causedminor changes in the neural network predictions. In order
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Figure 2. Angle of attack versus sideslip angle for the neural network training data from a 6.6-min flight simulation with the Edge 540.

to better observe faults for the different surfaces, individual neural networks were investigated. The neural networks
were based on the effects of the control surfaces shown previously in Table1.

Using the relationships in Table1, additional neural networks were constructed and explored. The different neural
networks described in this paragraph are listed in Table2. The ‘roll network’ observed aileron faults through the roll
rate. Rudder faults affected the yaw or sideslip rate which is the output of the ‘yaw network’. The ‘pitch network’
observed elevator faults.

Table 2. Neural network inputs and outputs for different cases

Neural network Inputs (0.1-sec delay) Outputs

Angular Rates α, β , V, φ , θ , ψ , δe, δa, δr δT p, q, r
Roll Network α, β , V, φ , θ , ψ , δe, δa, δr δT p, φ , β̇
Yaw Network α, β , V, φ , θ , ψ , δe, δa, δr δT β̇
Pitch Network β , V, φ , θ , ψ , δe, δa, δr δT q, α, α̇

The neural networks were trained on the sets of input and output variables specified in Table2. There was a 0.1-sec
delay between the inputs and outputs in an attempt to model the system lag. The flight data came from an unplanned
6.6-min flight that covered a wide range of angles of attack and sideslip angles as shown in Fig.2. The flight covered
more than just the linear flight regimes and included stalls,inverted flight and flight with high angular rates. The
deflections in elevator, ailerons and rudder were approximately ±15,±20, and±27 deg, respectively. By covering
a range of flight conditions during the neural-network training, the neural network matched some flight performance
cases outside of the linear regime. The neural-network training covered a large enough range of non-linear flight
conditions to be able to accurately predict performance in most flight regimes.

The trained neural network accurately simulated flight and predicted aircraft state variables based on previous state
and control inputs. If the control inputs changed due to an unknown change in the control surfaces (a fault), the output
of the neural network no longer matched the expected behavior. Each surface changed the output in a different manner,
and the change in behavior could be used to investigate faults.

III. Observing Faults

The faults addressed in this paper deal with a continuum of control surface failures. Many control surface faults
are manifested in a continuum from a small effect to large effect. In this paper, the suite of faults selected were under-
responsive control surfaces which could represent a variety of underlying problems. The selected faults varied from a
completely non-responsive control surface to one that onlymoved a percentage of the commanded amount. The non-
responsive control surface was the most extreme fault, while a control surface that moved 50% was the least extreme.
There are infinite specific faults between 0% and 100% non-responsive. The faults modeled as an under-responsive
control surface represent a number of different failures.

The set of faults explored can be caused by a variety of problems. Damage to the control linkage, incorrect control
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Full 6−DOF Simulation
Neural Network Prediction

Figure 3. The full 6-DOF simulation and neural network pre-
dictions for the roll rate for the nominal system.
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Figure 4. The full 6-DOF simulation and neural network predic-
tions for the roll rate for a faulty system with one non-responsive
aileron.

logic, and damaged or missing parts of control surfaces could all be the root cause of the fault. In-flight damaged such
as battle damage or a bird-strike, can cause a control surface to loose effectiveness. The result would be the loss of
a percentage of the nominal control effectiveness of a surface. A number of different test cases are used within this
paper to explore the range of faults.

A. Modeling Control Surface Faults

The two ailerons can either fail individually, becoming frozen at a position or not deflecting as much as commanded.
Figure3 shows the behavior for a pair of aileron doublets with a left roll and then a right roll where the second doublet
is larger than the first. The experiment with both ailerons working properly is shown in Fig.3. As seen in Fig.3
The neural network accurately predicted the roll rate of theaircraft during the maneuvers; the simulator data and
neural network prediction practically overlap. In order tosee if the neural network observed a fault, the same doublet
experiment was repeated with one aileron locked at approximately neutral. In this case the airplane banked at a slower
rate than the neural network expected (Fig.4). The difference in roll rate allowed a residual to be calculated and faults
to be identified (see following section “Calculating Residuals”).

The single rudder control surface can fail by not deflecting as far as commanded. Figure5 shows the behavior of
the yaw rate during a flight with a rudder fault injected at 12 sec. In non-faulty flight, the rudder caused a change in
the yaw rate and the neural network accurately predicted theimmediate change in yaw rate. When the rudder returned
to neutral, the yaw rate decayed through under-damped oscillations, which the neural network predicted. When the
rudder became half effective (after 12 sec) the immediate change in sideslip rate decreases. The neural network
predicted higher yaw rate during the initial deflection while it still accurately predicted the sideslip during the decay
(under-damped motion). Rudder faults can be detected by observing the yaw rate response as the rudder is deflected.

Finally, the pitch control is managed by a left and right elevator that move in parallel. Both sides can fail as a
pair or just one side can fail alone. A failure can be represented by a degraded deflection or a frozen control surface.
The airplanes pitch rate depends on airspeed and elevator deflection. In normal flight, the neural network accurately
predicted pitch rate over a range of elevator deflections using the inputs to the ‘pitch-rate’ neural network (see Table
2). The result of the pitch-rate estimate for the elevator is shown in Fig.6. The figure shows the nominal elevator
before a fault is injected at approximately 8 sec. Before thefault was injected the neural network accurately predicted
the pitch rate. After a fault was injected at 8 sec causing theelevators to deflect 33% of the commanded amount, the
neural network over-estimated the pitch rate. The neural network system model showed the potential to detect faults
by using the mismatch in the prediction and measured outputs.

The next case considered was an elevator failure where one side was frozen at 0-deg deflection. In this case, the
pitch rate is expected to be lower as a result of having less elevator authority. Figure7 shows the flight of the airplane
with one elevator frozen at neutral and the prediction of theneural network. In Fig.6 that fault was injected after the
flight started, but in both cases the pitch rate showed how theneural network did not predict the pitch rate properly.
Decreased effectiveness in the pitch axis can be observed bythe mismatch between the neural network prediction and
system response and can be used to detect faults by calculating a residual.
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Figure 5. The full 6-DOF simulation and neural network predictions for the yaw rate for faulty and non-faulty systems with rudder
deflections.
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Figure 6. The full 6-DOF simulation and neural network predic-
tions for the pitch rate for nominal elevator with a 33% effective
elevator response fault injected at approximately 8 sec.
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Figure 7. The full 6-DOF simulation and neural network pre-
dictions for the pitch rate for the right elevator locked fault.

B. Calculating Residuals

Residuals are the error between the neural network predictions and the actual system behavior at every timestep.
A small residual occurs during the nominal non-faulty flightdue to an imperfect neural network model. After a
fault is injected the residual increases significantly because the actual system dynamics changed. Depending on the
characteristics of the residual, specific faults can be identified within the system. Since the residual is key to identifying
the faults, different methods to calculate the residuals were explored.

The residual was calculated two ways each represented the difference between the neural network system model
and the actual system model. First, the direct residual,RD, was calculated by comparing the neural network prediction
of the output,Yp(t) and current output of the system,Ym(t):

RD(t) = Yp(t)−Ym(t) (1)

As shown in Fig.8, the direct residual had spikes during the transient behavior as the control surface changed deflec-
tion. It was observed, in systems with unmodeled lag in the response, models will have prediction error at the instance
when the inputs are changing. The comparison of neural network prediction to the actual model had unmodeled lag
since the input only had one time step of delayed data–not a time history. The second method attempted to calculate
the residual in the presence of unmodeled system lag.

In order to overcome the unmodeled lag, the calculation of the residual was modified to include a time history.
Instead of just comparing the current time,t, a limited number of previous time steps,n, were included in the compar-
ison. The current time estimate from the neural network was compared to the last few seconds of actual measurements
as:

RT(t) = min
i=1:n

{

Yp(t)−Ym(t − i)
}

(2)
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Figure 8. Comparison of the methods to calculate the residual
for faulty and non-faulty ailerons.
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Figure 9. A residual trace comparison between nominal aileron
and faulty aileron behavior.

The time-lagged residual,RT , limited the spikes due to lag because as the system starts changing, the neural network
was compared to a range of values from the real system,Ym(t − i), that included before and after the input changed.
The range of data allowed the neural network predictions to have imprecise system lag and still model the system
dynamics well. As shown in Fig.8, the residual that allowed for unmodeled time delays had a closer match in error
between predictions and the real system, but the time laggedresidual still increased to similar values in the case of
a fault. By allowing the shift in time when calculating residuals, the effect of any unmodeled lag in the system was
decreased.

C. Residual Threshold

A threshold was used to differentiate the faults from non-faults. Instead of using a dynamic threshold which depends
on the excitation at any given time to detect a fault, a set threshold value was used for the pitch, roll and yaw rate.
A single set value was simpler to select than a dynamic threshold, but the ideas presented would be applicable to an
adjustable threshold. Figure9 shows the residual calculation during a flight with faulty ailerons. First, during the
non-faulty flight the residual had some minor spikes, but always stayed below the threshold. Second, in the faulty
flight, the fault was initially not detectable since the aileron was deflected and the roll rate was close to zero. All the
control surface faults were latent or not observable when the control surface was not deflected and the angular rate was
close to zero. Once the first doublet was started at 5 sec (Fig.9), the residual spiked and a fault was detected. Finally,
the residual continues to decrease as the roll rate decreases and spikes anytime the aileron is deflected, detecting the
error. The constant threshold showed that the residual method detects faults when the faulty surface is deflected.

D. Tracking Errors

The residual was the difference between the prediction and actual response. By taking the ratio of the predicted to
actual response an error ratio was calculated. The error ratio provided insight into the faults as illustrated in Fig.10
which shows the error ratio for three different aileron faults. First, there was a regime of low excitation where the
difference between faulty and nominal cannot be observed. This region of low excitation corresponded to the latent
region. Second, the ratio depended on the percentage, the control surface was not moving. This allowed different
faults to be distinguished and estimated. Beyond just identifying the control surface that was faulty, an understanding
of the how the faulty surface was behaving increases the situational awareness and the increased understanding would
allow supervisory and remote pilots to make better decisions.

By tracking the error ratio, the control surface effectiveness was estimated. Anytime a fault was observed (the
residual was greater than the threshold), the ratio of predicted to actual response was calculated and stored. By storing
the ratios during the faulty time-steps, the faulty surfaceeffectiveness was calculated. The error ratio showed how
the performance was changed in the presence of a fault. The result of calculating the error ratio during the periods
of residual spikes, brought insight into what fault had occurred and would allow for decisions to be made that could
include modifying the control inputs.

In the case of a locked aileron, the ratio between predicted and actual roll rate was approximately 50% which was
expected since each aileron contributes half of the roll control. Similarly, when one aileron was half effective, the
ratio was approximately 75%. Table3 shows how different faults affected the ratio of predicted to actual response.
By tracking the error ratio during periods when the residualwas above the threshold, more information about the fault
could be discovered.
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Figure 10. The slopes of the 6-DOF freedom roll rate versus the neural network prediction for roll rate for different aile ron faults.

Table 3. A table showing the different control surface faults and their effects on the error ratio.

Fault Percentage of nominal control surface response Observed error ratio
Nominal aileron 100% 1.01
One aileron locked 50% 0.46
One aileron deflection scaled by 50% 75% 0.72
Nominal elevator 100% 1.11
One elevator locked 50% 0.54
Elevator deflection scaled by 33% 33% 0.29
Elevator deflection scaled by 50% 50% 0.56
Nominal rudder 100% 1.08
Rudder deflection scaled by 25% 25% 0.32
Rudder deflection scaled by 50% 50% 0.46

To model each of the faults individually would require numerous models since the control surface faults happen in a
continuum range between completely non-responsive to partially-effective to nominal performance. Tracking the error
ratio overcomes this problem through additional calculations on the output variables from the prediction and actual
system. Instead of looking at a wide range of complex models,a single simple model of neural network abstracted
dynamics, allow more complex decisions to be made on the relationship between the neural network predictions and
the system outputs.

IV. Detection via State Machines

State machines can represent complex decision making processes through a set of states, transitions and actions
within the states. From each state, changes in transition variables drive the state machine to a new state. Within in
a state, a number actions are completed to alert the user, update internal calculations and finally select the next state.
From the time evolution of the observed variables, the statemachine makes discrete decisions at each time-step. Fault
detection on a limited number of observation variables requires complex decision making which is easily implemented
in a state machine framework. By changing the state depending on the outputs of the system and the neural network
model of the system a fault detection state machine was developed.

The flexibility in designing the state machines response to different observations and the ease of redesigning
without changing how the observations are generated make state machines applicable to fault detection. The transition
decisions can be based on complex functions of the observed variables as well as the current state of the system.
The functions used for transitions in the state machine can be changed as the suite of faults that need to be observed
changes. Given different fault models, a state machine can be designed to detect different suites of faults without
needing to alter the underlying system model. The flexibility allows additional types of faults to be added to the
detection scheme as the faults are discovered.

State machines offer flexibility in the design of states and transitions to detect the different faults. Minimal knowl-
edge about the fault is required before designing the systemmodel since the state machine can be customized, a
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posteriori, when detailed models of the faults are known. Instead of requiring numerous complex system dynamics
models, the state machine offers a flexible framework to makecomplex decisions to detect a variety of faults using a
single system model.

A. Application to UAV Fault Detection

In constructing the state machine, a few assumptions were made on the nature of the faults. The assumptions allowed
a simple state machine to be constructed that could monitor the previously discussed faults. First, the aircraft was
assumed to start in a non-faulty or nominal state. Second, the faults were assumed to be permanent which meant after
a fault appeared no attempt was made to find when it left the system. The state machine designed here was a simple
four-state state machine shown in Fig11 and explained in Table 4. The model was used to predict faultsusing the
residual and an internal counter.

The key transition variable was if the residual was greater than or less than the threshold. In order to avoid
false positives, a minimum of three consecutive residuals must be greater than the threshold before the fault becomes
permanent. While in the faulty state, the error ratio was calculated to provide information on the fault. As previously
discussed, the error ratio provided information on how the fault was affecting the control surface. In the latent fault
state, the error ratio was not calculated, but the system wasstill assumed to be faulty. The dashed line back to nominal
requires a decision depending on if the faults can be proven to no longer exist. Proving a fault has left the system
would require a decision depending on the excitation level being high enough for the fault to be seen, but the fault not
appearing. However, since the faults were assumed to be permanent, the transition from faulty or latent to nominal
was not allowed.

Figure 11. The simple four-state state machine used for fault detection.

B. Results for Fault Detection on UAV

In order to illustrate the state machine two example flights will be used. Figure12 and13 respectively show the
behavior of the residual in the case of a faulty elevator and afaulty rudder. Starting with the elevator example (Fig.12),
the state machine started in thenominalstate. The residual was well below the threshold for the first8.5 sec and no
transitions occurred. After the fault was injected (approximately 8.5 sec), the residual stayed below the threshold for
a short period of time. Once the residual exceeded the threshold (approximately 9 sec) the transitioned to thefault
observedstate occurred. Since the residual continued to exceed the threshold, the counter incremented to three and
then the state machine transitioned tofault confirmed. In this state the error ratio was calculated. Once the residual
became lower than the threshold (approximately 9.5 sec) thestate machine transitioned to thelatent faultstate. In
this state, the fault was still present, but the ratio was no longer calculated. Just before 11 sec, when the residual
again exceeded the threshold, the state machine transitioned back tofault confirmedand the error ratio continued to be
calculated. The average error ratio measured during the flight was 0.29, which was close to the injected fault of 33%
effective elevator. The transitions continued between latent fault and fault confirmed for the remainder of the flight.

In the second example shown in Fig.13, the system also started in the nominal state. After the fault was injected,
since the rudder was not excited, the fault stayed latent andunobserved. Once the rudder was deflected, residual
spiked at 16.5 sec, and the state machine transitioned tofault observed. However, the sideslip rate excitation was brief,
so the counter was less than three when the residual became less than the threshold. The state transitioned back to
nominaland reset the counter to 0. At 17.5 sec, the state transitioned back to fault observed, and this time the counter
exceeded three. Then the state transitioned tofault confirmedand the error ratio was calculated. With four seconds of
being injected the fault was observed, but not confirmed. It was confirmed with a longer, larger deflection a couple of
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Table 4. Finite state machine for the fault detection.

State: Nominal Control Surface

Entry Action: counter= 0

Next State: if Residual< Threshold→ Nominal Control Surface

Next State: if Residual> Threshold→ Fault Observed

State: Fault Observed

Entry Action: counter= counter+1

Next State: if Residual< Threshold→ Nominal Control Surface

Next State: if Residual> Threshold& counter< 3→ Fault Observed

Next State: if Residual> Threshold& counter> 3→ Fault Confirmed

State: Fault Confirmed

Entry Action: Calculate Error Ratio

Next State: if Residual< Threshold→ Latent Fault

Next State: if Residual> Threshold→ Fault Confirmed

State: Latent

Entry Action:

Next State: if Residual< Threshold→ Latent Fault

Next State: if Residual> Threshold→ Fault Confirmed

Next State: if Fault corrected→ Nominal Control Surface

seconds later. The error ratio was calculated to be 0.46 during the periods in thefault confirmedstate which was close
to the injected fault of a 50% effective rudder. This exampleshows how latent faults can take longer to observe.

Both of these examples illustrate how the complex faults were accurately detected through the two layers of
abstraction. First, the neural network modeled the system and allowed an accurate residual to be calculated. Second,
a state machine abstraction was used to monitor the residualand detect the faults. The state machine used the residual
as the main decision variable, and calculated an error ratioto further understand any detected fault. By using the error
ratio the faults effect was calculated and then could be usedto predict how the system performance will change.

Table5 shows the average time to detect a fault after exciting the axis. For each control surface two different faults
were used multiple times and specifics are listed in the table. The average time required to observe a fault depended
on the excitation levels, the control surface and the dynamics model. The times listed the delay from the fault injection
and the surface being excited to the fault detection.
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Figure 12. The residual traces and fault detection for a elevator
fault (scaled by 33%).
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Figure 13. The residual traces and fault detection for a rudder
fault (scaled by 50%).
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Table 5. Fault detection results for neural network modeling in a state machine framework.

Control surface Average time to observe fault (sec) Test cases Types of faults

Aileron 1.48
6 50% Left aileron
6 Locked left aileron

Elevator 0.158
6 50% elevator
6 33% elevator

Rudder 1.29
6 50% elevator
5 25% elevator

V. Conclusions

Neural networks presented a way to simulate a physical system for health monitoring and fault detection. In order
to observe the faults, the inputs and outputs of the neural network needed to be selected carefully to accurately model
the system. Using non-linear aircraft models from existingflight simulators, the effects of the different control surfaces
were found. By selecting inputs and outputs that were needed, faults on the aileron, rudder and elevator were observed
using a neural network that performed well over a range of flight conditions. By comparing the predicted outputs and
the measurement outputs a residual was calculated.

The residual was calculated using a set of current and older measured outputs to better handle the unmodeled lag in
the system. Neural network predictions of flight parameterswere good particularly outside of the instances of control
surface movement. The unmodeled system lag limited the model accuracy in the short term when the control surfaces
were deflected. By modifying the residual calculation a closer match between the predictions and measurements was
achieved. The more accurate time-lagged residual was used by the state machine to detect faults within the system.

A simple state machine was constructed to track and make decisions on the fault state. If the residual exceeded
the threshold, a fault was observed and once a fault was observed in a set of consecutive measurements the fault was
confirmed. While in the faulty state, a ratio of the predictions to measurements showed how the fault was affecting the
control surface effectiveness. The ratio placed the fault within the continuum of potential faults that the state machine
had been designed to detect.

The state machine framework was selected because it represented a flexible framework that can be designed to
detect the expected faults allowing the neural network dynamics models not to be redone for every new fault. Instead,
the state machine could be updated as additional faults werediscovered and understood. By using the state machine
abstraction to monitor a system and detect faults, the underlying physics model could be simplified.

Detecting faults by using a complex dynamics model and comparing these models to actual outputs through a
residual using state machines was presented here. Neural networks were trained to accurately predict the aircraft
dynamics over a range of flight regimes. The state machine framework allowed flexibility in the fault detection without
redesigning the dynamics models. Neural network predictions can be used with a state machine abstraction to observe
control surface faults on an small airplane.
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