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Health Monitoring via Neural Networks
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Monitoring of semi-autonomous systems increases situatial awareness and is highly applicable to small
remotely piloted aircraft. The complex dynamics of aircraft flight were abstracted by modeling the system
with a neural network. The neural network accurately modelal the non-faulty dynamics for comparison to
the actual system. Since, the system included unmodeled |atpe residual calculation needed to account for
unmodeled lag. The method presented here decreased the effeof the lag on the residual. A ratio between the
predicted and measured system outputs was used to understaithe faults and understand how the future per-
formance will be affected by the fault. A state machine abstaction offered a flexible fault-detection framework
that can be adapted and designed to detect different faults ithout requiring a full dynamics model of each
fault. Through using abstractions, the complex dynamics mdels required for fault detection were simplified
and a state machine offered the flexibility to detect differat suites of faults.

Nomenclature

= counter

= roll rate

= pitch rate

= yaw rate

residual

D = direct residual

L = time-lagged residual

= threshold

= time

= airspeed

b = predicted system output

m = measured system output
= angle of attack
= sideslip angle

o & = aileron, elevator and rudder deflections
= rollangle
= pitch angle
= yaw angle
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[. Introduction

The proliferation of small uninhabited aerial vehicles {$A operating semi-autonomously over long distances
require local on-board monitoring of system performanceanltbring allows a system operating with a degree of
autonomy to alert operators or other systems when a faudttexcted that degrades the system performance. Software-
based monitoring does not require additional sensors awaae and can easily be added to small UAVs. Software
based fault monitoring may be key to increasing the safetytiarst of small UAV systems so they can have wider use
in civil airspace! Fault monitoring and alerting allow the remote operatoremmote pilot to quickly know when an
aircraft flying autonomously needs additional attention.

In order to monitor system behavior and alert the operat@nithe system is not operating as expected, an accurate
model of the system is needed. Aircraft flight dynamics iditranally modeled as a six degree-of-freedom (6 DOF)
system, that can be linearized at given angles of attack.limbarized model is only accurate close to the point of
linearization, so the linear model will break down away frtma point of linearization. A limited model of behavior
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can be generated from the geometry, but higher-accuracgimoetjuire higher-fidelity data. This data can be acquired
from wind tunnel tests, computational fluid dynamics andhfligst. Flight testing generates the most realistic result
but with many limitations. In order to build accurate modelsfault detection, model fitting must be done and the
accuracy of the model must be verified. Beyond just modelisgt@f complex decisions must be made to detect and
diagnose different faults.

Instead of trying to fully model the complex system of an &in@, a number of levels of abstraction made the
problem simpler and more tractable. Rather than developamgplex continuous equations of motion, a black-box
estimator was developed in the form of a neural network. Blask-box abstracted the dynamics into a set of inputs
and outputs that allowed residuals to be calculated. As &x¢ level of abstraction, a state machine was used to
monitor and observe the system. A state machine allowed lexdgcisions to be made on a small set of variables
that resulted from the outputs of the black-box model. Stheee was just one dynamics model, a more complex set
of decisions was made within the state machine. Insteadasfdipg time developing and checking numerous nominal
and faulty dynamics models, a single nominal dynamics maddla well-designed state machine could accurately
predict faults.

A. Background

An artificial neural network is a collection of nodes that aimple processoré* Each node takes a set of inputs
and generates a set of outputs which are minimized to mathatiget outputs supplied during training. Through
randomized iterative processing, the nodes converge telimgdthe behavior of the input and output data. Neural
networks can model non-linear relationships between iapdtoutput states. The performance of a neural network is
based on training the neural network using existing test,datd they can be used to model aircraft behavior. Neural
networks offer a way to rapidly model non-linear dynamicsros wide range of flight conditions that can be used for
health monitoring.

A method was developed using neural networks for fault &sienon-linear controller8.An augmented model
inversion controller was applied to a tilt rotor and an néneawork was combined with linearized feedback to control
the aircraft during different stages of flight and durindufegs. The authors explored the stability of single hidthgrer
neural networks. Neural networks have been used to impleageptive fault tolerant controlle® The effectiveness
of the controller depended on the selection of inputs andired tuning in order to be fault tolerafitn the literature,
the importance of the selection and structure of inputs anpluts was also noted!.

Neural networks map non-linear behavior well from limiteataland have been used for system identificatibn.
Neural networks have been used to identify nonlinear patenmever a wide range of flight conditions. They were
used to model forces and moments on a turboprop over a widg @inangles of attack and sideslip angfeshe
neural network accurately predicted the non-linear aaradyic coefficients. Not only are neural networks accurate,
but often, after the training, they are computationallyoifit. Neural networks were investigated as a computdtiona
more efficient method to model aircraft data used in flightators>® Once trained, the neural networks accurately
simulated the non-linear aircraft dynamics much fasten thraditional coefficient-based simulator.

The wider problem of fault detection can be applied to thesstibf aircraft health monitoringIn general residuals
are calculated as the prediction error. When the residualsesl a threshold, a fault is detected. Depending on the
set of observed changes in residual(s), a decision matign@ery large) can be used to identify different failure
modes of the systertf The threshold can be a static value or the threshold can wargrdically depending on the
system excitatiot*12 A dynamic threshold allows the fault threshold to vary witle system excitation, making the
fault detection work over a larger range of excitations.tdad of comparing modeled dynamics, the inputs can be
reconstructed from the measured system response. Thesteaziad control inputs are compared to the actual control
inputs and mismatches indicate a fatitin addition, instead of comparing against a model, multipiependent
predictions can be used. An example in the literature usgepi@andent inputs to different neural networks to classify
the maneuver that a helicopter was undergdiftj there was disagreement between the independent neuva e
then the system was assumed to be faulty. Many different imadeechniques and ideas can be used to generate
residuals and a variety of techniques can be used to find wkearitdnas occurred.

B. Aircraft Models

Aircraft flight dynamics models have been developed to maderaft motion as an inertial mass in translation and
rotation with six degrees of freedof:2’ The six degree-of-freedom system has three translatioritaad rotation
axes where the full nonlinear equations are generally tined at the low angle of attack equilibrium position. In
order to control the system, a number of actuators are &kajland in this paper four basic actuators were used:
ailerons, elevator, rudder and throttle.

Each control surface affects the system in a different manhe order to understand how each fault will be
observed in the system, the effect of different controlaet must be understood. A transfer-function relationship
between the control surfaces and the outputs for perturiggd Had been developed Each control surface primarily
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Figure 1. 33%-scale Edge 540 aerobatic RC model used in thewilations.

affects one to three state variables, and the results avenshorablel. Both the ailerons and rudder affect roll angle
and heading, but the aileron generates a roll rate whileutiéar generates a sideslip rate to change heading and affect
the roll through coupled dynamics. The elevator is used itehgontrol and aircraft trim. Initially it drives the pitc

rate, but then holds a steady condition. This knowledge $dira basis of developing the neural networks by selecting
inputs and outputs that result in accurate fault detectevfopmance.

Table 1. Control surface deflections and most correlated agraft state output.

Aileron = (0]
Rudder = B
Elevator = a,0,6

C. Aircraft Simulation

In order to easily gather data similar to a flight test, a fligihtulator was used. The data from the simulator was used
to train the neural networks and investigate failure caB&0Onev was developed to simulate small RC aircraft and
can easily be applied to small scale UAYT he simulator models aerodynamics on a component-by-cosibasis
over the linear and non-linear flight regimes. Forces and emdsifrom each component, e.g., wing, horizontal tail,
vertical fin, etc., are independently calculated and thennsad for the total airplane. Because the model is built-up
from components, any change in the aerodynamics of an thaivicomponent can easily be modeled without having
to recalculate the force and moment coefficients for theenircraft.

The aircraft used within the simulator was a 33%-scalederisf the aerobatic Edge 540 produced and distributed
by Horizon Hobby under the Hangar 9 brattiThe simulator model is based on an RC model that has a winggpan
97 in (2.46 m) and a length of 88 in (2.24 m). The aerobatic Rglaie weighs approximately 25 Ib (55 kg) and is
powered by a 100-cc gas engine.

[I. Models of Aircraft

Using data from FS One, a nominal neural network was traimecadous inputs and outputs. The neural network
was a single hidden-layer feed-forward neural networksetith 10 hidden nodes and a delay of 0.1 sec between the
input state variables and the output state variaBléken nodes were selected because the nominal networks had ten
inputs. The delay was selected to be long enough for the heetw&ork to easily process the older inputs and make
a prediction against the current time. A number of diffeneetiral network input and output sets were investigated.
Initially, a single input-to-output mapping labeled asdatar rates’ in Tabl® was explored since there was just one
neural network with a set of outputs being the angular rate®valuating the neural network applicability to fault
detection, two performance criteria were used. First, gngral network needed to be able to accurately predict the
nominal model, and second, the model needed to show a satifilifference with the injected faults. The ‘angular
rate’ model (see Tabl2) accurately predicted the dynamics and showed a signifitiffierence with aileron faults
using the roll rate. Faults on the other surfaces only camsedr changes in the neural network predictions. In order
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Figure 2. Angle of attack versus sideslip angle for the neudanetwork training data from a 6.6-min flight simulation with the Edge 540.

to better observe faults for the different surfaces, irtiigil neural networks were investigated. The neural netsvork
were based on the effects of the control surfaces shownqurslyiin Tablel.

Using the relationships in Table additional neural networks were constructed and explorad different neural
networks described in this paragraph are listed in T2blehe ‘roll network’ observed aileron faults through thel rol
rate. Rudder faults affected the yaw or sideslip rate whicthé output of the ‘yaw network’. The ‘pitch network’
observed elevator faults.

Table 2. Neural network inputs and outputs for different cases

Neural network Inputs (0.1-sec delay) Outputs

Angular Rates a,B,V,®, 0, , 30,0, & or  p,q,r
Roll Network a,B,V,®,0,y, 3,0, & or p, ¢ B
Yaw Network a, 3,V, @, 6, Y, &, Oa, & Or B

Pitch Network  B,V, @, 6, W, O, 04, & Or g,a,a

The neural networks were trained on the sets of input andibugiables specified in Tabk There was a 0.1-sec
delay between the inputs and outputs in an attempt to modedytstem lag. The flight data came from an unplanned
6.6-min flight that covered a wide range of angles of attacksideslip angles as shown in F&.The flight covered
more than just the linear flight regimes and included statigerted flight and flight with high angular rates. The
deflections in elevator, ailerons and rudder were apprabeiypa-15, +20, and+27 deg, respectively. By covering
a range of flight conditions during the neural-network tiragr) the neural network matched some flight performance
cases outside of the linear regime. The neural-networkitrgicovered a large enough range of non-linear flight
conditions to be able to accurately predict performanceastrflight regimes.

The trained neural network accurately simulated flight anedljgted aircraft state variables based on previous state
and control inputs. If the control inputs changed due to dmawn change in the control surfaces (a fault), the output
of the neural network no longer matched the expected beh&aah surface changed the output in a different manner,
and the change in behavior could be used to investigatesfault

[ll. Observing Faults

The faults addressed in this paper deal with a continuum wfrobsurface failures. Many control surface faults
are manifested in a continuum from a small effect to largeaffin this paper, the suite of faults selected were under-
responsive control surfaces which could represent a yasfainderlying problems. The selected faults varied from a
completely non-responsive control surface to one that ordyed a percentage of the commanded amount. The non-
responsive control surface was the most extreme faultevehdontrol surface that moved 50% was the least extreme.
There are infinite specific faults between 0% and 100% noperesve. The faults modeled as an under-responsive
control surface represent a number of different failures.

The set of faults explored can be caused by a variety of pnehl®amage to the control linkage, incorrect control
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Figure 4. The full 6-DOF simulation and neural network predic-
tions for the roll rate for a faulty system with one non-respasive
aileron.

Figure 3. The full 6-DOF simulation and neural network pre-
dictions for the roll rate for the nominal system.

logic, and damaged or missing parts of control surfacesdcallibe the root cause of the fault. In-flight damaged such
as battle damage or a bird-strike, can cause a control sutfaloose effectiveness. The result would be the loss of
a percentage of the nominal control effectiveness of a serfA number of different test cases are used within this
paper to explore the range of faults.

A. Modeling Control Surface Faults

The two ailerons can either fail individually, becomingZem at a position or not deflecting as much as commanded.
Figure3 shows the behavior for a pair of aileron doublets with a lelftand then a right roll where the second doublet
is larger than the first. The experiment with both aileronskivay properly is shown in Fig3. As seen in Fig3

The neural network accurately predicted the roll rate ofdheraft during the maneuvers; the simulator data and
neural network prediction practically overlap. In ordest if the neural network observed a fault, the same doublet
experiment was repeated with one aileron locked at apprteiyneutral. In this case the airplane banked at a slower
rate than the neural network expected (Big.The difference in roll rate allowed a residual to be cadted and faults

to be identified (see following section “Calculating Resiti).

The single rudder control surface can fail by not deflectingga as commanded. Figubesshows the behavior of
the yaw rate during a flight with a rudder fault injected at &2.sIln non-faulty flight, the rudder caused a change in
the yaw rate and the neural network accurately predictenfrthreediate change in yaw rate. When the rudder returned
to neutral, the yaw rate decayed through under-dampedatgmils, which the neural network predicted. When the
rudder became half effective (after 12 sec) the immediatagé in sideslip rate decreases. The neural network
predicted higher yaw rate during the initial deflection whitl still accurately predicted the sideslip during the deca
(under-damped motion). Rudder faults can be detected graibg the yaw rate response as the rudder is deflected.

Finally, the pitch control is managed by a left and right atev that move in parallel. Both sides can fail as a
pair or just one side can fail alone. A failure can be represkhy a degraded deflection or a frozen control surface.
The airplanes pitch rate depends on airspeed and elevdtectitan. In normal flight, the neural network accurately
predicted pitch rate over a range of elevator deflectionsgubie inputs to the ‘pitch-rate’ neural network (see Table
2). The result of the pitch-rate estimate for the elevatohiewn in Fig.6. The figure shows the nominal elevator
before a fault is injected at approximately 8 sec. Befordalé was injected the neural network accurately predicted
the pitch rate. After a fault was injected at 8 sec causingtbeators to deflect 33% of the commanded amount, the
neural network over-estimated the pitch rate. The neurtalark system model showed the potential to detect faults
by using the mismatch in the prediction and measured outputs

The next case considered was an elevator failure where daensis frozen at 0-deg deflection. In this case, the
pitch rate is expected to be lower as a result of having lesa#r authority. Figur@ shows the flight of the airplane
with one elevator frozen at neutral and the prediction ofrteeral network. In Fig6 that fault was injected after the
flight started, but in both cases the pitch rate showed howdheal network did not predict the pitch rate properly.
Decreased effectiveness in the pitch axis can be observétbgismatch between the neural network prediction and
system response and can be used to detect faults by calgudatesidual.
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Figure 6. The full 6-DOF simulation and neural network predic-
tions for the pitch rate for nominal elevator with a 33% effective
elevator response fault injected at approximately 8 sec.

Figure 7. The full 6-DOF simulation and neural network pre-
dictions for the pitch rate for the right elevator locked fault.

B. Calculating Residuals

Residuals are the error between the neural network predigtnd the actual system behavior at every timestep.
A small residual occurs during the nominal non-faulty flighte to an imperfect neural network model. After a
fault is injected the residual increases significantly liseathe actual system dynamics changed. Depending on the
characteristics of the residual, specific faults can betified within the system. Since the residual is key to ideyirif
the faults, different methods to calculate the residualeweeplored.

The residual was calculated two ways each representedffbesdice between the neural network system model

and the actual system model. First, the direct resid®slwas calculated by comparing the neural network prediction
of the outputyYp(t) and current output of the systel(t):

Ro(t) = Yp(t) — Ym(t) 1)

As shown in Fig8, the direct residual had spikes during the transient behas the control surface changed deflec-
tion. It was observed, in systems with unmodeled lag in tepaase, models will have prediction error at the instance
when the inputs are changing. The comparison of neural mktprediction to the actual model had unmodeled lag
since the input only had one time step of delayed data—nate liistory. The second method attempted to calculate
the residual in the presence of unmodeled system lag.

In order to overcome the unmodeled lag, the calculation efréisidual was modified to include a time history.
Instead of just comparing the current tinhega limited number of previous time stepswere included in the compar-

ison. The current time estimate from the neural network veaspared to the last few seconds of actual measurements
as:

Rr(t) = min {¥p(t) = Yin(t — i)} @)

i=1n
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Figure 8. Comparison of the methods to calculate the residda Figure 9. A residual trace comparison between nominal ailesn
for faulty and non-faulty ailerons. and faulty aileron behavior.

The time-lagged residudRr, limited the spikes due to lag because as the system stamgicty, the neural network
was compared to a range of values from the real systgift,— i), that included before and after the input changed.
The range of data allowed the neural network predictionsatetimprecise system lag and still model the system
dynamics well. As shown in Fig, the residual that allowed for unmodeled time delays hagsecimatch in error
between predictions and the real system, but the time lagegdual still increased to similar values in the case of
a fault. By allowing the shift in time when calculating resads, the effect of any unmodeled lag in the system was
decreased.

C. Residual Threshold

A threshold was used to differentiate the faults from naultfa Instead of using a dynamic threshold which depends
on the excitation at any given time to detect a fault, a setstold value was used for the pitch, roll and yaw rate.
A single set value was simpler to select than a dynamic tlotdsbut the ideas presented would be applicable to an
adjustable threshold. FiguBshows the residual calculation during a flight with faultieedns. First, during the
non-faulty flight the residual had some minor spikes, butagisvstayed below the threshold. Second, in the faulty
flight, the fault was initially not detectable since the eile was deflected and the roll rate was close to zero. All the
control surface faults were latent or not observable whemémtrol surface was not deflected and the angular rate was
close to zero. Once the first doublet was started at 5 secqFithe residual spiked and a fault was detected. Finally,
the residual continues to decrease as the roll rate desraadespikes anytime the aileron is deflected, detecting the
error. The constant threshold showed that the residualadethtects faults when the faulty surface is deflected.

D. Tracking Errors

The residual was the difference between the prediction ahthbresponse. By taking the ratio of the predicted to
actual response an error ratio was calculated. The eriiorpedvided insight into the faults as illustrated in Fid)
which shows the error ratio for three different aileron faulFirst, there was a regime of low excitation where the
difference between faulty and nominal cannot be observéis fEgion of low excitation corresponded to the latent
region. Second, the ratio depended on the percentage, tiksurface was not moving. This allowed different
faults to be distinguished and estimated. Beyond just ifyémg the control surface that was faulty, an understagdin
of the how the faulty surface was behaving increases thatgtal awareness and the increased understanding would
allow supervisory and remote pilots to make better decssion

By tracking the error ratio, the control surface effectiess was estimated. Anytime a fault was observed (the
residual was greater than the threshold), the ratio of ptedito actual response was calculated and stored. By gtorin
the ratios during the faulty time-steps, the faulty surfaffectiveness was calculated. The error ratio showed how
the performance was changed in the presence of a fault. B of calculating the error ratio during the periods
of residual spikes, brought insight into what fault had agoed and would allow for decisions to be made that could
include modifying the control inputs.

In the case of a locked aileron, the ratio between prediatechatual roll rate was approximately 50% which was
expected since each aileron contributes half of the roltrobn Similarly, when one aileron was half effective, the
ratio was approximately 75%. TabBshows how different faults affected the ratio of predictecctual response.
By tracking the error ratio during periods when the residvad above the threshold, more information about the fault
could be discovered.
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Table 3. A table showing the different control surface fauls and their effects on the error ratio.

Fault Percentage of nominal control surface response @éderror ratio
Nominal aileron 100% 101
One aileron locked 50% 046
One aileron deflection scaled by 50% 75% 7D
Nominal elevator 100% 111
One elevator locked 50% 054
Elevator deflection scaled by 33% 33% .29
Elevator deflection scaled by 50% 50% .56
Nominal rudder 100% 108
Rudder deflection scaled by 25% 25% .39
Rudder deflection scaled by 50% 50% 40

To model each of the faults individually would require numes models since the control surface faults happenin a
continuum range between completely non-responsive taafigréffective to nominal performance. Tracking the erro
ratio overcomes this problem through additional calcafeion the output variables from the prediction and actual
system. Instead of looking at a wide range of complex modesingle simple model of neural network abstracted
dynamics, allow more complex decisions to be made on th&éae&hip between the neural network predictions and
the system outputs.

V. Detection via State Machines

State machines can represent complex decision makinggmes¢hrough a set of states, transitions and actions
within the states. From each state, changes in transitidablas drive the state machine to a new state. Within in
a state, a number actions are completed to alert the usataijpdernal calculations and finally select the next state.
From the time evolution of the observed variables, the stetehine makes discrete decisions at each time-step. Fault
detection on a limited number of observation variablesiregicomplex decision making which is easily implemented
in a state machine framework. By changing the state depgruirthe outputs of the system and the neural network
model of the system a fault detection state machine was cjgeé!

The flexibility in designing the state machines responseifferdnt observations and the ease of redesigning
without changing how the observations are generated matesrsiachines applicable to fault detection. The transition
decisions can be based on complex functions of the obselagables as well as the current state of the system.
The functions used for transitions in the state machine eachlanged as the suite of faults that need to be observed
changes. Given different fault models, a state machine eattelsigned to detect different suites of faults without
needing to alter the underlying system model. The flexib#ilows additional types of faults to be added to the
detection scheme as the faults are discovered.

State machines offer flexibility in the design of states aadgitions to detect the different faults. Minimal knowl-
edge about the fault is required before designing the systeael since the state machine can be customized, a
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posteriori, when detailed models of the faults are knowrstdad of requiring numerous complex system dynamics
models, the state machine offers a flexible framework to ntakeplex decisions to detect a variety of faults using a
single system model.

A. Application to UAV Fault Detection

In constructing the state machine, a few assumptions wede mia the nature of the faults. The assumptions allowed
a simple state machine to be constructed that could momigpteviously discussed faults. First, the aircraft was
assumed to start in a non-faulty or nominal state. Secoedatlits were assumed to be permanent which meant after
a fault appeared no attempt was made to find when it left theeisysThe state machine designed here was a simple
four-state state machine shown in Hifjand explained in Table 4. The model was used to predict fagitsy the
residual and an internal counter.

The key transition variable was if the residual was grediantor less than the threshold. In order to avoid
false positives, a minimum of three consecutive residuaistrine greater than the threshold before the fault becomes
permanent. While in the faulty state, the error ratio waswated to provide information on the fault. As previously
discussed, the error ratio provided information on how thédtfwas affecting the control surface. In the latent fault
state, the error ratio was not calculated, but the systenstiliassumed to be faulty. The dashed line back to nominal
requires a decision depending on if the faults can be provertlonger exist. Proving a fault has left the system
would require a decision depending on the excitation leeeidphigh enough for the fault to be seen, but the fault not
appearing. However, since the faults were assumed to beapemt the transition from faulty or latent to nominal
was not allowed.

R<T R>T R>T R<T R<T

Fault
Observed

Fault
Confirmed

Control
Surface

Increment

Calculate
C=0 ;

e~

Fault Correction

Figure 11. The simple four-state state machine used for fatiletection.

B. Results for Fault Detection on UAV

In order to illustrate the state machine two example flighils ve used. Figurel2 and 13 respectively show the
behavior of the residual in the case of a faulty elevator diadilty rudder. Starting with the elevator example (Hig),

the state machine started in theminalstate. The residual was well below the threshold for the &rStsec and no
transitions occurred. After the fault was injected (apjpmately 8.5 sec), the residual stayed below the threshald fo
a short period of time. Once the residual exceeded the tbiegapproximately 9 sec) the transitioned to thalt
observedstate occurred. Since the residual continued to exceedhthshiold, the counter incremented to three and
then the state machine transitioneddalt confirmed In this state the error ratio was calculated. Once the vesid
became lower than the threshold (approximately 9.5 secjtite machine transitioned to tleent faultstate. In
this state, the fault was still present, but the ratio wasamyér calculated. Just before 11 sec, when the residual
again exceeded the threshold, the state machine traresitlmarck tdault confirmedand the error ratio continued to be
calculated. The average error ratio measured during tha figs 0.29, which was close to the injected fault of 33%
effective elevator. The transitions continued betweesniafault and fault confirmed for the remainder of the flight.

In the second example shown in Fif, the system also started in the nominal state. After the feas injected,
since the rudder was not excited, the fault stayed latentuatbserved. Once the rudder was deflected, residual
spiked at 16.5 sec, and the state machine transitionfadititobservedHowever, the sideslip rate excitation was brief,
so the counter was less than three when the residual becamthln the threshold. The state transitioned back to
nominaland reset the counter to 0. At 17.5 sec, the state transitibaek to fault observed, and this time the counter
exceeded three. Then the state transitiondduti confirmedand the error ratio was calculated. With four seconds of
being injected the fault was observed, but not confirmedak eonfirmed with a longer, larger deflection a couple of
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Table 4. Finite state machine for the fault detection.

State: Nominal Control Surface
Entry Action: counter=0
Next State: if Residual< T hreshold— Nominal Control Surface
Next State: if Residual> T hreshold— Fault Observed
State: Fault Observed
Entry Action: counter= counter+ 1
Next State: if Residual< T hreshold— Nominal Control Surface
Next State: if Residual> T hreshold& counter< 3 — Fault Observed
Next State: if Residual> T hreshold& counter> 3 — Fault Confirmed
State: Fault Confirmed
Entry Action: Calculate Error Ratio
Next State: if Residual< T hreshold— Latent Fault
Next State: if Residual> T hreshold— Fault Confirmed
State: Latent
Entry Action:
Next State: if Residual< T hreshold— Latent Fault
Next State: if Residual> T hreshold— Fault Confirmed
Next State: if Fault corrected— Nominal Control Surface

seconds later. The error ratio was calculated to be 0.4@gltiie periods in th&ault confirmedstate which was close
to the injected fault of a 50% effective rudder. This exanghlews how latent faults can take longer to observe.

Both of these examples illustrate how the complex faultsewaacurately detected through the two layers of
abstraction. First, the neural network modeled the systearedlowed an accurate residual to be calculated. Second,
a state machine abstraction was used to monitor the residdaletect the faults. The state machine used the residual
as the main decision variable, and calculated an errort@afiarther understand any detected fault. By using the error
ratio the faults effect was calculated and then could be tspdedict how the system performance will change.

Table5 shows the average time to detect a fault after exciting the &or each control surface two different faults
were used multiple times and specifics are listed in the takie average time required to observe a fault depended
on the excitation levels, the control surface and the dynamiodel. The times listed the delay from the fault injection
and the surface being excited to the fault detection.

@
3

30 . . . , c . . . ’
Before Injected Fault / Before Injected Fault Il
— — — After Injected Fault M — — — After Injected Fault I
20l 4 Threshold K 40l 4 Threshold il
—— Fault Injected N —— Fault Injected i
= i s A A A N i A
8 ] H |
5 10k : N A Ly N A 5 20 4
g i 2 [
= ! = e
s 1 T [T
I 1]
= BEI 2 Lttt n W
2 TIRA [ 2 [ v
4 [ R 4 [T
o [ I ST 3 [
5 I L 5 5 \
T 1on A e PR U AT . [y I
s [ ! Uy fey ‘W' i, H !
[ I [ o i i,,ﬁv.‘”v/\,h > N ) A
. Y I W L] i |
20 e f -40
W iy I
i W
Ny
30 ; ; ; ; ; ; ; ; ; I 60 ; ; ; ;
0 2 4 6 8 10 12 14 16 18 20 14 16 18 20
5 10- : : : : 5 40
g g
= € 20
= <
g8 o 56 o
g3 £3
22 S& 20
wo x o
8 10 ; ; ; ; ; ; ; ; ; ; 8 40 ; ; 1 ;
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Time (sec) Time (sec)

Figure 12. The residual traces and fault detection for a eleator Figure 13. The residual traces and fault detection for a ruder
fault (scaled by 33%). fault (scaled by 50%).
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Table 5. Fault detection results for neural network modelirg in a state machine framework.

Control surface  Average time to observe fault (sec) Testxas Types of faults
6 50% Left aileron

Aileron 1.48 6 Locked left aileron
6 50% elevator
Elevator 0.158 6 33% elevator
6 50% elevator
Rudder 1.29 5 25% elevator

V. Conclusions

Neural networks presented a way to simulate a physicalsyfiehealth monitoring and fault detection. In order
to observe the faults, the inputs and outputs of the neutalatk needed to be selected carefully to accurately model
the system. Using non-linear aircraft models from existiigipt simulators, the effects of the different control s.ods
were found. By selecting inputs and outputs that were neddeltis on the aileron, rudder and elevator were observed
using a neural network that performed well over a range diflapnditions. By comparing the predicted outputs and
the measurement outputs a residual was calculated.

The residual was calculated using a set of current and oldasared outputs to better handle the unmodeled lag in
the system. Neural network predictions of flight parametense good particularly outside of the instances of control
surface movement. The unmodeled system lag limited the hagdaracy in the short term when the control surfaces
were deflected. By modifying the residual calculation aetaratch between the predictions and measurements was
achieved. The more accurate time-lagged residual was yste Istate machine to detect faults within the system.

A simple state machine was constructed to track and maksidasion the fault state. If the residual exceeded
the threshold, a fault was observed and once a fault was\@ibsar a set of consecutive measurements the fault was
confirmed. While in the faulty state, a ratio of the predinido measurements showed how the fault was affecting the
control surface effectiveness. The ratio placed the faitltiavthe continuum of potential faults that the state maehi
had been designed to detect.

The state machine framework was selected because it repedsa flexible framework that can be designed to
detect the expected faults allowing the neural network dyiosa models not to be redone for every new fault. Instead,
the state machine could be updated as additional faults distevered and understood. By using the state machine
abstraction to monitor a system and detect faults, the lyidgmphysics model could be simplified.

Detecting faults by using a complex dynamics model and coimgpdhese models to actual outputs through a
residual using state machines was presented here. Neuvalrke were trained to accurately predict the aircraft
dynamics over a range of flight regimes. The state machinedinark allowed flexibility in the fault detection without
redesigning the dynamics models. Neural network predistaan be used with a state machine abstraction to observe
control surface faults on an small airplane.
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